cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054519 Number of increasing arithmetic progressions of nonnegative integers ending in n, including those of length 1 or 2.

This page as a plain text file.
%I A054519 #57 Feb 17 2022 01:11:17
%S A054519 1,2,4,6,9,11,15,17,21,24,28,30,36,38,42,46,51,53,59,61,67,71,75,77,
%T A054519 85,88,92,96,102,104,112,114,120,124,128,132,141,143,147,151,159,161,
%U A054519 169,171,177,183,187,189,199,202,208,212,218,220,228,232,240,244,248
%N A054519 Number of increasing arithmetic progressions of nonnegative integers ending in n, including those of length 1 or 2.
%C A054519 a(0)=1, a(n) = a(n-1) + sigma_0(n) (A000005). - _Ctibor O. Zizka_, Nov 08 2008
%C A054519 a(n) is the index of the n-th term of A027750 whose value is 1. - _Michel Marcus_, Oct 15 2015
%C A054519 From _Gus Wiseman_, Jun 07 2019: (Start)
%C A054519 Also the number of subsets of {1..n} that are closed under taking the difference of two strictly decreasing terms. For example, the a(0) = 1 through a(6) = 15 subsets are:
%C A054519   {}  {}   {}     {}       {}         {}           {}
%C A054519       {1}  {1}    {1}      {1}        {1}          {1}
%C A054519            {2}    {2}      {2}        {2}          {2}
%C A054519            {1,2}  {3}      {3}        {3}          {3}
%C A054519                   {1,2}    {4}        {4}          {4}
%C A054519                   {1,2,3}  {1,2}      {5}          {5}
%C A054519                            {2,4}      {1,2}        {6}
%C A054519                            {1,2,3}    {2,4}        {1,2}
%C A054519                            {1,2,3,4}  {1,2,3}      {2,4}
%C A054519                                       {1,2,3,4}    {3,6}
%C A054519                                       {1,2,3,4,5}  {1,2,3}
%C A054519                                                    {2,4,6}
%C A054519                                                    {1,2,3,4}
%C A054519                                                    {1,2,3,4,5}
%C A054519                                                    {1,2,3,4,5,6}
%C A054519 (End)
%H A054519 Marius A. Burtea, <a href="/A054519/b054519.txt">Table of n, a(n) for n = 0..10000</a> (term 0..1000 from T. D. Noe).
%H A054519 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>
%F A054519 a(n) = A051336(n+1) - A051336(n) = a(n-1) + A000005(n) = A006218(n)+1.
%F A054519 G.f.: (1-x)^(-1) * (1 + Sum_{j>=1} x^j/(1-x^j)). - _Robert Israel_, Oct 15 2015
%F A054519 a(n) = Sum_{i=1..n+1} ceiling((n+1)/(i+1)). - _Wesley Ivan Hurt_, Sep 15 2017
%e A054519 a(3)=6 because the six increasing progressions (3), (2,3), (1,2,3), (0,1,2,3), (1,3) and (0,3) all end in 3.
%p A054519 IBI:= {{}}: a[0]:= 1: for n from 1 to 45 do IBI:= IBI union map(t -> t union {n}, select(t -> (t minus map(q -> n-q, t)={}), IBI)); a[n]:= nops(IBI) od: seq(a[n], n=0..45); # _Zerinvary Lajos_, Mar 18 2007
%p A054519 with(numtheory):a[1]:=2: for n from 2 to 59 do a[n]:=a[n-1]+tau(n) od: seq(a[n], n=0..45); # _Zerinvary Lajos_, Mar 21 2009
%p A054519 map(`+`, ListTools:-PartialSums(map(numtheory:-tau, [$0..1000])),1); # _Robert Israel_, Oct 15 2015
%t A054519 a[0]=1; a[n_] := a[n] = a[n-1] + DivisorSigma[0, n]; Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Oct 05 2012, after _Ctibor O. Zizka_ *)
%t A054519 nxt[{n_,a_}]:={n+1,a+DivisorSigma[0,n+1]}; Transpose[NestList[nxt,{0,1},50]][[2]] (* _Harvey P. Dale_, Oct 15 2012 *)
%t A054519 Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Subtract@@@Reverse/@Subsets[#,{2}]]&]],{n,0,10}] (* _Gus Wiseman_, Jun 07 2019 *)
%o A054519 (PARI) vector(100, n, n--; sum(k=1, n, n\k) + 1) \\ _Altug Alkan_, Oct 15 2015
%o A054519 (Magma) [1] cat [&+[Ceiling((k+1)/(i+1)): i in [1..k+1]]: k in [1..60]]; // _Marius A. Burtea_, Jun 10 2019
%Y A054519 Cf. A000005, A006218, A027750, A051336. Left edge of A056535.
%Y A054519 Cf. A007862, A049988, A175342, A238423, A295370, A325849.
%K A054519 easy,nonn,nice
%O A054519 0,2
%A A054519 _Henry Bottomley_, Apr 07 2000