cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054540 A list of equal temperaments (equal divisions of the octave) whose nearest scale steps are closer and closer approximations to the six simple ratios of musical harmony: 6/5, 5/4, 4/3, 3/2, 8/5 and 5/3.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 19, 31, 34, 53, 118, 171, 289, 323, 441, 612, 730, 1171, 1783, 2513, 4296, 12276, 16572, 20868, 25164, 46032, 48545, 52841, 73709, 78005, 151714, 229719, 537443, 714321, 792326, 944040, 1022045, 1251764, 3755292, 3985011
Offset: 0

Views

Author

Mark William Rankin (MarkRankin95511(AT)Yahoo.com), Apr 09 2000; Dec 17 2000

Keywords

Comments

The sequence was found by a computer search of all of the equal divisions of the octave from 1 to over 3985011. There seems to be a hidden aspect or mystery here: what is it about the more and more harmonious equal temperaments that causes them to express themselves collectively as a perfect, self-accumulating recurrent sequence?
From Eliora Ben-Gurion, Dec 15 2022: (Start)
The answer is because temperament mappings can be added. If harmonic correspondences are written in a bra, that is
Example: a tuning with 118 equal steps to the octave has a second harmonic on the 118th step by definition, the third harmonic is approximated with 187 steps, and the fifth is with 274 steps, which leads to <118 187 274]. A 171 equal division system will have a corresponding bra <171 271 397]. When these two are added, we obtain <289 458 671], which is exactly how the 2nd, 3rd, and 5th harmonics are represented in 289 equal divisions of the octave. (End)

Examples

			34 = 31 + the earlier term 3. Again, 118 = 53 + the earlier terms 34 and 31.
		

Formula

Stochastic recurrence rule - the next term equals the current term plus one or more previous terms: a(n+1) = a(n) + a(n-x) + ... + a(n-y) + ... + a(n-z), etc.