cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054589 Table related to labeled rooted trees, cycles and binary trees.

This page as a plain text file.
%I A054589 #80 Jun 11 2025 16:35:29
%S A054589 1,1,1,2,4,3,6,18,25,15,24,96,190,210,105,120,600,1526,2380,2205,945,
%T A054589 720,4320,13356,26488,34650,27720,10395,5040,35280,128052,305620,
%U A054589 507430,575190,405405,135135
%N A054589 Table related to labeled rooted trees, cycles and binary trees.
%C A054589 The left column is (n-1)!, the right column is (2n-3)!!, the total of each row is n^(n-1).
%C A054589 Constant terms of polynomials related to Ramanujan psi polynomials (see Zeng reference).
%C A054589 From _Peter Bala_, Sep 29 2011: (Start)
%C A054589 Differentiating n times the Lambert function W(x) = Sum_{n>=1} n^(n-1)*x^n/n! with respect to x yields (d/dx)^n W(x) = exp(n*W(x))/(1-W(x))^n*R(n,1/(1-W(x))), where R(n,x) is the n-th row polynomial of this triangle. The first few values are R(1,x) = 1, R(2,x) = 1+x, R(3,x) = 2+4*x+3*x^2. The Ramanujan polynomials R(n,x) are strongly x-log-convex [Chen et al.].
%C A054589 Shor and Dumont-Ramamonjisoa have proved independently that the coefficient of x^k in R(n,x) counts rooted labeled trees on n vertices with k improper edges. Drake, Example 1.7.3, gives another combinatorial interpretation for this triangle as counting a family of labeled trees.
%C A054589 (End)
%H A054589 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013-2014.
%H A054589 William Y. C. Chen, Amy M. Fu, and Elena L. Wang, <a href="https://arxiv.org/abs/2506.01649">A Grammatical Calculus for the Ramanujan Polynomials</a>, arXiv:2506.01649 [math.CO], 2025. See p. 3.
%H A054589 William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, <a href="http://arxiv.org/abs/0806.3641">Recurrence Relations for Strongly q-Log-Convex Polynomials</a>, arXiv:0806.3641v1 [math.CO], 2008.
%H A054589 Diego Dominici, <a href="http://arxiv.org/abs/math/0501052">Nested derivatives: A simple method for Computing series expansions of inverse functions.</a> arXiv:math/0501052v2 [math.CA], 2005.
%H A054589 Brian Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths</a>, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
%H A054589 Dominique Dumont and Armand Ramamonjisoa, <a href="https://doi.org/10.37236/1275">Grammaire de Ramanujan et Arbres de Cayley</a>, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).
%H A054589 D. J. Jeffrey, G. A. Kalugin, and N. Murdoch, <a href="https://www.uwo.ca/apmaths/faculty/jeffrey/pdfs/JeffreySYNASC2015paper17.pdf">Lagrange inversion and Lambert W</a>, Preprint 2015.
%H A054589 Matthieu Josuat-Vergès, <a href="http://arxiv.org/abs/1310.7531">Derivatives of the tree function</a>, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
%H A054589 Peter W. Shor, <a href="https://doi.org/10.1016/0097-3165(95)90022-5">A new proof of Cayley's formula for counting labeled trees</a>, J. Combin. Theory Ser. A 71 (1995), no. 1, 154-158.
%H A054589 Jiang Zeng, <a href="http://math.univ-lyon1.fr/homes-www/zeng/public_html/paper/Cayley.ps">A Ramanujan sequence that refines the Cayley formula for trees</a>, Ramanujan J., 3(1999) 1, 45-54.
%F A054589 The polynomials p_n = Sum a[n, k]x^k satisfy p_1=1 and p_(n+1) = x*x*dp_n/dx+n*(1+x)*p_n.
%F A054589 From _Peter Bala_, Sep 29 2011: (Start)
%F A054589 E.g.f.: series reversion with respect to x of (1-t+(t-1+x*t)*exp(-x)) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ....
%F A054589 The sequence of shifted row polynomials {p_n(1+t)}n>=1 begins [1,2+t,9+10*t+3*t^2,...]. These are the row polynomials of A048160.
%F A054589 (End)
%F A054589 Let f(x) = exp(x)/(1-t*x). The e.g.f. A(x,t) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ... satisfies the autonomous differential equation dA/dx = f(A). The n-th row polynomial (n>=1) equals D^(n-1)(f(x)) evaluated at x = 0, where D is the operator f(x)*d/dx (apply [Dominici, Theorem 4.1]). - _Peter Bala_, Nov 09 2011
%F A054589 The polynomials (1+t)^(n-1)*p_n(1/(1+t)) are (up to sign) the row polynomials of A042977. - _Peter Bala_, Jul 23 2012
%F A054589 Let q_n = Sum_{k>=0} a(n,k)*t^(n-k), with q_0 = 1. (So q_1=t, q_2 = t+t^2, and q_3 = 3*t + 4*t^2 + 2*t^3.)  Then Sum_{n>=0} q_n*x^n/n! = t - W((t-1-t^2*x)*exp(t-1)), where W is the Lambert function. - _Ira M. Gessel_, Jan 06 2012
%e A054589 Triangle begins:
%e A054589   {1},
%e A054589   {1,  1},
%e A054589   {2,  4,  3},
%e A054589   {6, 18, 25, 15},
%e A054589   ...
%t A054589 p[1] = 1; p[n_] := p[n] = Expand[x^2*D[p[n-1], x] + (n-1)(1+x)p[n-1]]; Flatten[ Table[ CoefficientList[ p[n], x], {n, 1, 8}]] (* _Jean-François Alcover_, Jul 22 2011 *)
%t A054589 Clear[a];
%t A054589 a[1, 0] = 1;
%t A054589 a[n_, k_] /; k < 0 || k >= n := 0
%t A054589 a[n_, k_] /; 0 <= k <= n - 1 :=
%t A054589 a[n, k] = (n - 1) a[n - 1, k] + (n + k - 2) a[n - 1, k - 1]
%t A054589 Table[a[n, k], {n, 20}, {k, 0, n - 1}] (* _David Callan_, Oct 14 2012 *)
%Y A054589 Cf. A000169, A001147, A075856, A048159, A048160, A042977.
%K A054589 nonn,tabl
%O A054589 1,4
%A A054589 _F. Chapoton_, Apr 14 2000