A054639 Queneau numbers: numbers n such that the Queneau-Daniel permutation {1, 2, 3, ..., n} -> {n, 1, n-1, 2, n-2, 3, ...} is of order n.
1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, 50, 51, 53, 65, 69, 74, 81, 83, 86, 89, 90, 95, 98, 99, 105, 113, 119, 131, 134, 135, 146, 155, 158, 173, 174, 179, 183, 186, 189, 191, 194, 209, 210, 221, 230, 231, 233, 239
Offset: 1
Keywords
Examples
For N=6 and N=7 we obtain the permutations (1 2 4 5 3 6) and (1 2 4 7)(3 6)(5): 6 is T-prime, but 7 is not. - _Peter R. J. Asveld_, Aug 17 2009
References
- Raymond Queneau, Note complémentaire sur la Sextaine, Subsidia Pataphysica 1 (1963), pp. 79-80.
- Jacques Roubaud, Bibliothèque Oulipienne No 65 (1992) and 66 (1993).
Links
- P. R. J. Asveld, Table of n, a(n) for n = 1..10085
- Jean-Paul Allouche, Manon Stipulanti, and Jia-Yan Yao, Doubling modulo odd integers, generalizations, and unexpected occurrences, arXiv:2504.17564 [math.NT], 2025.
- Joerg Arndt, Matters Computational (The Fxtbook), section 42.9 "Gaussian normal bases", pp. 914-920
- P. R. J. Asveld, Permuting operations on strings and their relation to prime numbers, Discrete Applied Mathematics 159 (2011) 1915-1932.
- P. R. J. Asveld, Permuting operations on strings and the distribution of their prime numbers, TR-CTIT-11-24, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Some families of permutations and their primes (2009), TR-CTIT-09-27, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Queneau Numbers--Recent Results and a Bibliography, University of Twente, 2013.
- P. R. J. Asveld, Permuting Operations on Strings-Their Permutations and Their Primes, Twente University of Technology, 2014.
- Michèle Audin, Poésie, Spirales, et Battements de Cartes, Images des Mathématiques, CNRS, 2019 (in French).
- M. Bringer, Sur un problème de R. Queneau, Math. Sci. Humaines No. 25 (1969) 13-20.
- Jean-Guillaume Dumas, Caractérisation des Quenines et leur représentation spirale, Mathématiques et Sciences Humaines, Centre de Mathématique Sociale et de statistique, EPHE, 2008, 184 (4), pp. 9-23, hal-00188240.
- G. Esposito-Farese, C program
- Index entries for sequences related to the Josephus Problem
Crossrefs
Not to be confused with Queneau's "s-additive sequences", see A003044.
A005384 is a subsequence.
Programs
-
Maple
QD:= proc(n) local i; if n::even then map(op,[seq([n-i,i+1],i=0..n/2-1)]) else map(op, [seq([n-i,i+1],i=0..(n-1)/2-1),[(n+1)/2]]) fi end proc: select(n -> GroupTheory:-PermOrder(Perm(QD(n)))=n, [$1..1000]); # Robert Israel, May 01 2016
-
Mathematica
a[p_] := Sum[Cos[2^n Pi/((2 p + 1) )], {n, 1, p}]; Select[Range[500],Reduce[a[#] == -1/2, Rationals] &] (* Gerry Martens, May 01 2016 *)
-
PARI
is(n)= { if (n==1, return(1)); my( m=n%4 ); if ( m==4, return(0) ); my(p=2*n+1, r=znorder(Mod(2,p))); if ( !isprime(p), return(0) ); if ( m==3 && r==n, return(1) ); if ( r==2*n, return(1) ); \\ r == 1 or 2 return(0); } for(n=1,10^3, if(is(n),print1(n,", ")) ); \\ Joerg Arndt, May 02 2016
Formula
a(n) = (A216371(n)-1)/2. - L. Edson Jeffery, Dec 18 2012
a(n) >> n log n, and on the Bateman-Horn-Stemmler conjecture a(n) << n log^2 n. I imagine a(n) ≍ n log n, and numerics suggest that perhaps a(n) ~ kn log n for some constant k (which seems to be around 1.122). - Charles R Greathouse IV, Aug 02 2023
Comments