This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054640 #54 Nov 19 2024 12:59:39 %S A054640 1,3,12,72,576,6912,96768,1741824,34836480,836075520,25082265600, %T A054640 802632499200,30500034969600,1281001468723200,56364064623820800, %U A054640 2705475101943398400,146095655504943513600,8765739330296610816000,543475838478389870592000,36956357016530511200256000 %N A054640 a(n) is the sum of the divisors of the n-th primorial: a(n) = A000203(A002110(n)). %H A054640 Vincenzo Librandi, <a href="/A054640/b054640.txt">Table of n, a(n) for n = 0..200</a> %H A054640 Rafael Jakimczuk, <a href="http://doi.org/10.12988/imf.2017.7113">Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts</a>, International Mathematical Forum, Vol. 12, No. 7 (2017), pp. 331-338. %F A054640 a(n+1) = a(n)*(prime(n) + 1) = a(n)*A028815(n) (quotient=n-th prime+1 starting with 2). %F A054640 a(n) ~ (6/Pi^2) * exp(gamma) * A002110(n) * log(prime(n)) + O(A002110(n)) (Jakimczuk, 2017). - _Amiram Eldar_, Feb 17 2021 %F A054640 a(n) = a(n-1) * A008864(n). - _Flávio V. Fernandes_, Mar 20 2021 %F A054640 a(n) = A002110(n) + A074107(n), a(n) <= A070826(1+n) [= A002110(1+n)/2] < A051674(n). - _Antti Karttunen_, Nov 19 2024 %p A054640 a:= n-> mul(1+ithprime(j), j=1..n): seq(a(n), n=0..20); # _Zerinvary Lajos_, Aug 24 2008 %t A054640 Table[Product[1 + Prime[i], {i,n-1}], {n,100}] (* _Geoffrey Critzer_, Dec 01 2014 *) %o A054640 (PARI) a(n)=prod(i=1,n,prime(i)+1) \\ _Charles R Greathouse IV_, Feb 13 2013 %o A054640 (Magma) [1/2*&*[(1+NthPrime(k)): k in [0..n-1]]: n in [1..19]]; // _Vincenzo Librandi_, May 08 2017 %o A054640 (SageMath) %o A054640 def A054640(n): return product(nth_prime(j)+1 for j in range(1,n+1)) %o A054640 [A054640(n) for n in range(41)] # _G. C. Greubel_, Aug 05 2024 %Y A054640 Cf. A000203, A002110, A005867, A008864, A028815, A051674, A054641, A070826, A073004, A074107. %K A054640 nonn %O A054640 0,2 %A A054640 _Labos Elemer_, May 15 2000 %E A054640 a(0)=1 prepended by _Alois P. Heinz_, Apr 01 2021