This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054651 #43 May 27 2024 09:18:22 %S A054651 1,1,1,1,1,2,1,0,5,6,1,-2,11,14,24,1,-5,25,5,94,120,1,-9,55,-75,304, %T A054651 444,720,1,-14,112,-350,1099,364,3828,5040,1,-20,210,-1064,3969,-4340, %U A054651 15980,25584,40320,1,-27,366,-2646,12873,-31563,79064,34236,270576,362880 %N A054651 Triangle T(n,k) read by rows giving coefficients in expansion of n! * Sum_{i=0..n} C(x,i) in descending powers of x. %C A054651 Apparently A190782 with reversed rows. - _Mathew Englander_, May 17 2014 %H A054651 T. D. Noe, <a href="/A054651/b054651.txt">Rows n = 0..100 of triangle, flattened</a> %F A054651 T(n, k) = Sum_{i=0..k} Stirling1(i+n-k,n-k)*n!/(i+n-k)!. - _Igor Victorovich Statsenko_, May 27 2024 %e A054651 The first few polynomials are: %e A054651 1, 1+x, 2+x+x^2, 6+5*x+x^3, 24+14*x+11*x^2-2*x^3+x^4, ... %e A054651 So the triangle begins: %e A054651 1; %e A054651 1, 1; %e A054651 1, 1, 2; %e A054651 1, 0, 5, 6; %e A054651 1, -2, 11, 14, 24; %e A054651 1, -5, 25, 5, 94, 120; %e A054651 1, -9, 55, -75, 304, 444, 720; %e A054651 1, -14, 112, -350, 1099, 364, 3828, 5040; %e A054651 1, -20, 210, -1064, 3969, -4340, 15980, 25584, 40320; %e A054651 ... %t A054651 c[n_, k_] := Product[n-i, {i, 0, k-1}]/k!; row[n_] := CoefficientList[ n!*Sum[c[x, k], {k, 0, n}], x] // Reverse; Table[ row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Oct 04 2012 *) %Y A054651 T(2*n,n) gives A347987. %Y A054651 Cf. A054649, A054655, A054654, A190782 . %K A054651 sign,tabl,nice,easy %O A054651 0,6 %A A054651 _N. J. A. Sloane_, Apr 17 2000 %E A054651 Missing 0 corrected by Steve Marak - _N. J. A. Sloane_, Jul 27 2012