This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054683 #46 Jul 02 2025 16:01:59 %S A054683 0,2,4,6,8,11,13,15,17,19,20,22,24,26,28,31,33,35,37,39,40,42,44,46, %T A054683 48,51,53,55,57,59,60,62,64,66,68,71,73,75,77,79,80,82,84,86,88,91,93, %U A054683 95,97,99,101,103,105,107,109,110,112,114,116,118,121,123,125,127,129,130 %N A054683 Numbers whose sum of digits is even. %C A054683 Union of A179082 and A179084; A179081(a(n)) = 0. - _Reinhard Zumkeller_, Jun 28 2010 %C A054683 Integers with an even number of odd digits. - _Bernard Schott_, Nov 18 2022 %H A054683 Reinhard Zumkeller, <a href="/A054683/b054683.txt">Table of n, a(n) for n = 1..1000</a> %H A054683 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %H A054683 <a href="/index/Coi#Colombian">Index entries for Colombian or self numbers and related sequences</a> %F A054683 a(n) = 2*n for the first 5 terms; a(n) = 2*n + 1 for the next 5 terms (recurrence). %F A054683 I.e., for n > 0, a(n + 10) = a(n) + 20. - _David A. Corneth_, Jun 05 2016 %e A054683 0, 2, 4, 6, 8, 11 (2), 13 (4), 15 (6), 17 (8), 19 (10), 20 (2), 22 (4) and so on. %t A054683 Select[Range[0,200],EvenQ[Total[IntegerDigits[#]]]&] (* _Harvey P. Dale_, Jan 04 2015 *) %o A054683 (PARI) is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2==0 \\ _Charles R Greathouse IV_, Aug 09 2013 %o A054683 (PARI) a(n) = n--; m = 10*(n\5); s=sumdigits(m); m + (1-(s-1)%2) + 2*(n%5) \\ _David A. Corneth_, Jun 05 2016 %o A054683 (Python) %o A054683 A054683_list = [i for i in range(10**3) if not sum(int(d) for d in str(i)) % 2] # _Chai Wah Wu_, Mar 17 2016 %Y A054683 Cf. A179081, A270264. %Y A054683 Subsequences: A014263, A099814, A179082, A179084. %Y A054683 Similar: A054684 (with an odd number of odd digits), A356929 (with an even number of even digits). %K A054683 nonn,easy,base %O A054683 1,2 %A A054683 _Odimar Fabeny_, Apr 19 2000 %E A054683 More terms from _James Sellers_, Apr 19 2000 %E A054683 Example corrected by _David A. Corneth_, Jun 05 2016