This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054719 #28 Apr 14 2021 22:25:16 %S A054719 1,4,12,60,240,1020,4020,16380,65280,262080,1047540,4194300,16772880, %T A054719 67108860,268419060,1073740740,4294901760,17179869180,68719210560, %U A054719 274877906940,1099510578960,4398046494660,17592181850100,70368744177660,281474959868160 %N A054719 Number of 4-ary sequences with primitive period n. %C A054719 Equivalently, output sequences with primitive period n from a simple cycling shift register. %H A054719 Seiichi Manyama, <a href="/A054719/b054719.txt">Table of n, a(n) for n = 0..1660</a> (terms 0..500 from Alois P. Heinz) %H A054719 E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665. %F A054719 a(n) = Sum_{d|n} mu(d)*4^(n/d). %F A054719 a(n) = n * A027377(n), n>0. %F A054719 G.f.: 1 + 4 * Sum_{k>=1} mu(k) * x^k / (1 - 4*x^k). - _Ilya Gutkovskiy_, Apr 14 2021 %p A054719 A054719 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s); fi; end; %t A054719 a[0] = 1; a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 11 2014 *) %Y A054719 Cf. A001868, A027377. %Y A054719 Column k=4 of A143324. %K A054719 nonn %O A054719 0,2 %A A054719 _N. J. A. Sloane_, Apr 20 2000