This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054730 #18 May 25 2016 11:49:43 %S A054730 49267,74135,94091,96463,102727,107643,118639,138483,145125,181703, %T A054730 182675,208523,221943,237387,240735,245263,255783,267765,269627, %U A054730 272583,277943,280647,283887,286815,309663,313447,322435,326355,336675,347823,352719 %N A054730 Odd n such that genus of modular curve X_0(N) is never equal to n. %C A054730 There are 4329 odd integers in the sequence less than 10^7. - _Gheorghe Coserea_, May 23 2016 %D A054730 J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000. %H A054730 Gheorghe Coserea, <a href="/A054730/b054730.txt">Table of n, a(n) for n = 1..4329</a> %H A054730 J. A. Csirik, M. Zieve, and J. Wetherell, <a href="http://arXiv.org/abs/math/0006096">On the genera of X0(N)</a>, arXiv:math/0006096 [math.NT], 2000. %o A054730 (PARI) %o A054730 A000089(n) = { %o A054730 if (n%4 == 0 || n%4 == 3, return(0)); %o A054730 if (n%2 == 0, n \= 2); %o A054730 my(f = factor(n), fsz = matsize(f)[1]); %o A054730 prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2)); %o A054730 }; %o A054730 A000086(n) = { %o A054730 if (n%9 == 0 || n%3 == 2, return(0)); %o A054730 if (n%3 == 0, n \= 3); %o A054730 my(f = factor(n), fsz = matsize(f)[1]); %o A054730 prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2)); %o A054730 }; %o A054730 A001615(n) = { %o A054730 my(f = factor(n), fsz = matsize(f)[1], %o A054730 g = prod(k=1, fsz, (f[k, 1]+1)), %o A054730 h = prod(k=1, fsz, f[k, 1])); %o A054730 return((n*g)\h); %o A054730 }; %o A054730 A001616(n) = { %o A054730 my(f = factor(n), fsz = matsize(f)[1]); %o A054730 prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2)); %o A054730 }; %o A054730 A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; %o A054730 scan(n) = { %o A054730 my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g); %o A054730 for (k = 1, bnd, g = A001617(k); %o A054730 if (g <= n && inv[g+1] == -1, inv[g+1] = k)); %o A054730 select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1)))); %o A054730 }; %o A054730 scan(400*1000) %Y A054730 Cf. A054726, A054727, A054729. %K A054730 nonn %O A054730 1,1 %A A054730 Janos A. Csirik, Apr 21 2000 %E A054730 More terms from _Gheorghe Coserea_, May 23 2016 %E A054730 Offset corrected by _Gheorghe Coserea_, May 23 2016