This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054733 #22 Feb 19 2022 20:25:52 %S A054733 1,1,0,3,4,4,1,1,0,0,8,22,37,47,38,27,13,5,1,1,0,0,0,27,108,326,667, %T A054733 1127,1477,1665,1489,1154,707,379,154,61,16,5,1,1,0,0,0,0,91,582,2432, %U A054733 7694,19646,42148,77305,122953,170315,206982,220768,207301,171008 %N A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1). %D A054733 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973. %H A054733 Andrew Howroyd, <a href="/A054733/b054733.txt">Table of n, a(n) for n = 2..2661</a> (rows 2..20) %H A054733 R. J. Mathar, <a href="http://arxiv.org/abs/1709.09000">Statistics on Small Graphs</a>, arXiv:1709.09000 (2017) Table 75. %e A054733 1,1; %e A054733 0,3,4,4,1,1; %e A054733 0,0,8,22,37,47,38,27,13,5,1,1; %e A054733 the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs. %o A054733 (PARI) %o A054733 InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)} %o A054733 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A054733 edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))} %o A054733 G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!} %o A054733 row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)} %o A054733 { for(n=2, 6, print(row(n))) } \\ _Andrew Howroyd_, Jan 28 2022 %Y A054733 Cf. A000238 (leading diagonal), A003085 (row sums), A053454 (column sums), A062735 (labeled). %Y A054733 Cf. A052283 (not necessarily connected), A283753 (another version), A057276 (strongly connected), A350789 (transpose). %K A054733 easy,nonn,tabf %O A054733 2,4 %A A054733 _Vladeta Jovovic_, Apr 21 2000