This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054759 #35 Feb 16 2025 08:32:42 %S A054759 4,18,148,2970,143224,16448400,4484823396,2901094068042, %T A054759 4448410550095612,16178049740086515288,139402641051212392498528, %U A054759 2849295959501939989625992464,137950545200232788276834783781648,15844635835975276495290739119895808472 %N A054759 Number of Eulerian orientations of the n X n square lattice (with wrap-around), i.e., number of arrow configurations on n X n grid that satisfy the square ice rule. %C A054759 The n X n square lattice with wrap around is also called the torus grid graph. - _Andrew Howroyd_, Jan 11 2018 %D A054759 Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 412-416. %D A054759 Computed by Jennifer Henry in Dec. 1998. %H A054759 E. H. Lieb, <a href="http://dx.doi.org/10.1103/PhysRev.162.162">Residual entropy of square ice</a>, Phys. Rev. 162 (1967) 162-172. %H A054759 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ice/ice.html">Lieb's Square Ice Constant</a> [Broken link] %H A054759 Steven R. Finch, <a href="http://web.archive.org/web/20010608041254/http://www.mathsoft.com/asolve/constant/ice/ice.html">Lieb's Square Ice Constant</a> [From the Wayback machine] %H A054759 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a> %F A054759 Elliot Lieb proved that lim_{n->oo} a(n)^(1/n^2) = (4/3)^(3/2). See A118273. %Y A054759 Cf. A118273, A358177. Main diagonal of A298119. %K A054759 nonn %O A054759 1,1 %A A054759 _Steven Finch_, Apr 25 2000 %E A054759 a(14) from _Brendan McKay_, Apr 18 2024