This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054760 #31 May 16 2017 00:15:43 %S A054760 3,4,4,5,6,5,6,8,10,6,7,10,19,14,7,8,12,30,26,24,8,9,14,40,42,67,30,9, %T A054760 10,16,50,62 %N A054760 Table T(n,k) = order of (n,k)-cage (smallest n-regular graph of girth k), n >= 2, k >= 3, read by antidiagonals. %D A054760 P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32. %H A054760 Andries E. Brouwer, <a href="http://www.win.tue.nl/~aeb/graphs/cages/cages.html">Cages</a> %H A054760 M. Daven and C. A. Rodger, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00342-2">(k,g)-cages are 3-connected</a>, Discr. Math., 199 (1999), 207-215. %H A054760 Geoff Exoo, <a href="http://ginger.indstate.edu/ge/CAGES">Regular graphs of given degree and girth</a> %H A054760 G. Exoo and R. Jajcay, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS16">Dynamic cage survey</a>, Electr. J. Combin. (2008, 2011). %H A054760 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890//remote/cages/">Cubic Cages</a> %H A054760 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cages/allcages.html">Cages of higher valency</a> %H A054760 Pak Ken Wong, <a href="https://dx.doi.org/10.1002/jgt.3190060103">Cages-a survey</a>, J. Graph Theory 6 (1982), no. 1, 1-22. %F A054760 T(k,g) >= A198300(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized g/2-gon of order k - 1. - _Jason Kimberley_, Jan 01 2013 %e A054760 First eight antidiagonals are: %e A054760 3 4 5 6 7 8 9 10 %e A054760 4 6 10 14 24 30 58 %e A054760 5 8 19 26 67 80 %e A054760 6 10 30 42 ? %e A054760 7 12 40 62 %e A054760 8 14 50 %e A054760 9 16 %e A054760 10 %Y A054760 Moore lower bound: A198300. %Y A054760 Orders of cages: this sequence (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5). %Y A054760 Graphs not required to be regular: A006787, A006856. %K A054760 nonn,tabl,nice,hard,more %O A054760 0,1 %A A054760 _N. J. A. Sloane_, Apr 26 2000 %E A054760 Edited by _Jason Kimberley_, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013