cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054767 Period of the sequence of Bell numbers A000110 (mod n).

This page as a plain text file.
%I A054767 #47 Jun 19 2025 20:57:54
%S A054767 1,3,13,12,781,39,137257,24,39,2343,28531167061,156,25239592216021,
%T A054767 411771,10153,48,51702516367896047761,39,109912203092239643840221,
%U A054767 9372,1784341,85593501183,949112181811268728834319677753,312,3905,75718776648063,117,1647084
%N A054767 Period of the sequence of Bell numbers A000110 (mod n).
%C A054767 For p prime, a(p) divides (p^p-1)/(p-1) = A023037(p), with equality at least for p up to 19.
%C A054767 Wagstaff shows that N(p) = (p^p-1)/(p-1) is the period for all primes p < 102 and for primes p = 113, 163, 167 and 173. For p = 7547, N(p) is a probable prime, which means that this p may have the maximum possible period N(p) also. See A088790. - _T. D. Noe_, Dec 17 2008
%H A054767 Jianing Song, <a href="/A054767/b054767.txt">Table of n, a(n) for n = 1..102</a> (b-file based on the Wagstaff article)
%H A054767 J. Levine and R. E. Dalton, <a href="http://dx.doi.org/10.1090/S0025-5718-1962-0148604-2">Minimum Periods, Modulo p, of First Order Bell Exponential Integrals</a>, Mathematics of Computation, 16 (1962), 416-423.
%H A054767 W. F. Lunnon et al., <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa35/aa3511.pdf">Arithmetic properties of Bell numbers to a composite modulus I</a>, Acta Arithmetica 35 (1979), pp. 1-16.
%H A054767 Jianing Song, <a href="/A054767/a054767.pdf">A summary of several proofs in the Lunnon article</a>.
%H A054767 Samuel S. Wagstaff Jr., <a href="https://doi.org/10.1090/S0025-5718-96-00683-7">Aurifeuillian factorizations and the period of the Bell numbers modulo a prime</a>, Math. Comp. 65 (1996), 383-391.
%H A054767 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellNumber.html">Bell Number</a>.
%F A054767 If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - _Franklin T. Adams-Watters_, Jun 06 2006
%F A054767 a(2^s) = 3*2^s for s >= 2 (Theorem 6.4 in the Lunnon article). For an odd prime p, if a(p) = (p^p-1)/(p-1) (which is conjectured to hold for all p), then a(p^s) = p^(s-1)*(p^p-1)/(p-1) (Theorem 6.2 in the Lunnon article). - _Jianing Song_, Jun 18 2025
%t A054767 (* Warning: this program is just a verification of the existing data
%t A054767  and should not be used to extend the sequence beyond a(28) *)
%t A054767 BellMod[k_, m_] := Mod[Sum[Mod[StirlingS2[k, j], m], {j, 1, k}], m];
%t A054767 BellMod[k_, 1] := BellB[k];
%t A054767 period[nn_List] := Module[{lgmin=2, lgmax=5, nn1},
%t A054767    lg=If[Length[nn]<=lgmax, lgmin, lgmax];
%t A054767    nn1 = nn[[1;;lg]];
%t A054767    km=Length[nn]-lg;
%t A054767    Catch[Do[If[nn1==nn[[k;;k+lg-1]], Throw[k-1]];
%t A054767    If[k==km, Throw[0]], {k, 2, km}]]];
%t A054767 dd[n_] := SelectFirst[Table[{d, n/d},
%t A054767      {d, Divisors[n][[2;;-2]]}], GCD@@#==1&];
%t A054767 a[1]=1;
%t A054767 a[p_?PrimeQ] := a[p] = (p^p-1)/(p-1);
%t A054767 a[n_/;n>4 && dd[n]!={}] := With[{g = dd[n]}, LCM[a[g[[1]]], a[g[[2]]]]];
%t A054767 a[n_/;MemberQ[FactorInteger[n][[All, 2]], 1]] := a[n]=
%t A054767    With[{pp = Select[FactorInteger[n], #1[[2]] ==1 &][[All, 1]]},
%t A054767       a[n/Times@@pp]*Times@@a/@pp];
%t A054767 a[n_/;n>4 && GCD @@ FactorInteger[n][[All, 2]]>1] := a[n]=
%t A054767    With[{g=GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1-1/g)]];
%t A054767 a[n_] := period[Table[BellMod[k, n], {k, 1, 28}]];
%t A054767 Table[a[n], {n, 1, 28}] (* _Jean-François Alcover_, Jul 31 2012, updated May 06 2024 *)
%Y A054767 Cf. A000110, A023037, A214810. A146093-A146122 gives Bell numbers read mod 3 to mod 32.
%K A054767 nonn,hard,nice
%O A054767 1,2
%A A054767 _Eric W. Weisstein_, Feb 09 2002
%E A054767 More information from _Phil Carmody_, Dec 22 2002
%E A054767 Extended by _T. D. Noe_, Dec 18 2008
%E A054767 a(26) corrected by _Jean-François Alcover_, Jul 31 2012
%E A054767 a(18) corrected by _Charles R Greathouse IV_, Jul 31 2012
%E A054767 a(27)-a(28) from _Charles R Greathouse IV_, Sep 07 2016