cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054770 Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11, ... (A000204).

This page as a plain text file.
%I A054770 #77 Jul 02 2025 16:01:59
%S A054770 2,6,9,13,17,20,24,27,31,35,38,42,46,49,53,56,60,64,67,71,74,78,82,85,
%T A054770 89,93,96,100,103,107,111,114,118,122,125,129,132,136,140,143,147,150,
%U A054770 154,158,161,165,169,172,176,179,183,187,190,194,197,201,205,208,212
%N A054770 Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11, ... (A000204).
%C A054770 Alternatively, Lucas representation of n includes L_0 = 2. - _Fred Lunnon_, Aug 25 2001
%C A054770 Conjecture: this is the sequence of numbers for which the base phi representation includes phi itself, where phi = (1 + sqrt(5))/2 = the golden ratio. Example: let r = phi; then 6 = r^3 + r + r^(-4). - _Clark Kimberling_, Oct 17 2012
%C A054770 This conjecture is proved in my paper 'Base phi representations and golden mean beta-expansions', using the formula by Wilson/Agol/Carlitz et al. - _Michel Dekking_, Jun 25 2019
%C A054770 Numbers whose minimal Lucas representation (A130310) ends with 1. - _Amiram Eldar_, Jan 21 2023
%H A054770 G. C. Greubel, <a href="/A054770/b054770.txt">Table of n, a(n) for n = 1..5000</a>
%H A054770 L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-1/carlitz2-a.pdf">Lucas representations</a>, Fibonacci Quart. 10 (1972), 29-42, 70, 112.
%H A054770 Weiru Chen and Jared Krandel, <a href="https://arxiv.org/abs/1810.11938">Interpolating Classical Partitions of the Set of Positive Integers</a>, arXiv:1810.11938 [math.NT], 2018. See sequence D2 p. 4.
%H A054770 Michel Dekking, <a href="https://arxiv.org/abs/1906.08437">Base phi representations and golden mean beta-expansions</a>, arXiv:1906.08437 [math.NT], 2019.
%H A054770 Jared Krandel and Weiru Chen, <a href="https://doi.org/10.1007/s11139-019-00196-3">Interpolating classical partitions of the set of positive integers</a>, The Ramanujan Journal (2020).
%F A054770 a(n) = floor(((5+sqrt(5))/2)*n)-1 (conjectured by _David W. Wilson_; proved by Ian Agol (iagol(AT)math.ucdavis.edu), Jun 08 2000)
%F A054770 a(n) = A000201(n) + 2*n - 1. - _Michel Dekking_, Sep 07 2017
%F A054770 G.f.: x*(x+1)/(1-x)^2 + Sum_{i>=1} (floor(i*phi)*x^i), where phi = (1 + sqrt(5))/2. - _Iain Fox_, Dec 19 2017
%F A054770 Ian Agol tells me that David W. Wilson's formula is proved in the Carlitz, Scoville, Hoggatt paper 'Lucas representations'. See Equation (1.12), and use A(A(n))+n = B(n)+n-1 = A(n)+2*n-1, the well known formulas for the lower Wythoff sequence A = A000201, and the upper Wythoff sequence B = A001950. - _Michel Dekking_, Jan 04 2018
%p A054770 A054770 := n -> floor(n*(sqrt(5)+5)/2)-1;
%t A054770 Complement[Range[220],Total/@Subsets[LucasL[Range[25]],5]] (* _Harvey P. Dale_, Feb 27 2012 *)
%t A054770 Table[Floor[n (Sqrt[5] + 5) / 2] - 1, {n, 60}] (* _Vincenzo Librandi_, Oct 30 2018 *)
%o A054770 (PARI) a(n)=floor(n*(sqrt(5)+5)/2)-1
%o A054770 (Magma) [Floor(n*(Sqrt(5)+5)/2)-1: n in [1..60]]; // _Vincenzo Librandi_, Oct 30 2018
%o A054770 (Python)
%o A054770 from math import isqrt
%o A054770 def A054770(n): return (n+isqrt(5*n**2)>>1)+(n<<1)-1 # _Chai Wah Wu_, Aug 17 2022
%Y A054770 Complement of A063732.
%Y A054770 Cf. A003263, A003622, A022342, A130310.
%K A054770 nonn,easy
%O A054770 1,1
%A A054770 Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 28 2000
%E A054770 More terms from _James Sellers_, May 28 2000