This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054844 #33 Nov 30 2020 08:45:31 %S A054844 2,2,4,2,4,4,4,2,6,4,4,4,4,4,8,2,4,6,4,4,8,4,4,4,6,4,8,4,4,8,4,2,8,4, %T A054844 8,6,4,4,8,4,4,8,4,4,12,4,4,4,6,6,8,4,4,8,8,4,8,4,4,8,4,4,12,2,8,8,4, %U A054844 4,8,8,4,6,4,4,12,4,8,8,4,4,10,4,4,8,8,4,8,4,4,12,8,4,8,4,8,4,4,6,12,6 %N A054844 Number of ways to write n as the sum of any number of consecutive integers (including the trivial one-term sum n = n). %C A054844 a(n) = twice the number of odd divisors of n. That is, if d is the divisor function and q is the exponent of the largest power of 2 dividing n, then the a(n) equals 2*d(n)/(q+1). - _Andrew Niedermaier_, Jul 20 2003 %C A054844 Moebius transform is period 2 sequence [2, 0, ...]. - _Michael Somos_, Sep 20 2005 %C A054844 a(n) is twice the number of partitions of n into consecutive parts. - _Omar E. Pol_, Nov 28 2020 %H A054844 Antti Karttunen, <a href="/A054844/b054844.txt">Table of n, a(n) for n = 1..65537</a> %F A054844 a(n) = 2*A001227(n). - _Andrew Niedermaier_, Jul 20 2003 %F A054844 G.f.: Sum_{k>0} 2x^k/(1-x^(2k)) = Sum_{k>0} 2x^(2k-1)/(1-x^(2k-1)). - _Michael Somos_, Sep 20 2005 %F A054844 a(n) = A010054(n) + A335616(n). - _Omar E. Pol_, Nov 28 2020 %e A054844 a(3) = 4 because 3 = (-2)+(-1)+0+1+2+3 or 0+1+2 or 1+2 or 3; a(13) = 4 because 13 = (-12)+...+13 or (-5)+...+7 or 6+7 or 13. %e A054844 From _Omar E. Pol_, Nov 28 2020: (Start) %e A054844 Illustration of initial terms: %e A054844 Diagram %e A054844 n a(n) _ _ %e A054844 1 2 _|1 1|_ %e A054844 2 2 _|1 _ _ 1|_ %e A054844 3 4 _|1 |1 1| 1|_ %e A054844 4 2 _|1 _| |_ 1|_ %e A054844 5 4 _|1 |1 _ _ 1| 1|_ %e A054844 6 4 _|1 _| |1 1| |_ 1|_ %e A054844 7 4 _|1 |1 | | 1| 1|_ %e A054844 8 2 _|1 _| _| |_ |_ 1|_ %e A054844 9 6 _|1 |1 |1 _ _ 1| 1| 1|_ %e A054844 10 4 _|1 _| | |1 1| | |_ 1|_ %e A054844 11 4 _|1 |1 _| | | |_ 1| 1|_ %e A054844 12 4 _|1 _| |1 | | 1| |_ 1|_ %e A054844 13 4 _|1 |1 | _| |_ | 1| 1|_ %e A054844 14 4 _|1 _| _| |1 _ _ 1| |_ |_ 1|_ %e A054844 15 8 _|1 |1 |1 | |1 1| | 1| 1| 1|_ %e A054844 16 2 |1 | | | | | | | | 1| %e A054844 ... %e A054844 a(n) is the number of horizontal toothpicks in the n-th level of the diagram. (End) %o A054844 (PARI) a(n)=2*sumdiv(n,d,d%2) %o A054844 (PARI) A054844(n) = (2*numdiv(n>>valuation(n, 2))); \\ _Antti Karttunen_, Sep 27 2018 %Y A054844 Cf. A001227, A010054, A054843, A237593, A335616. %K A054844 easy,nonn %O A054844 1,1 %A A054844 _Henry Bottomley_, Apr 13 2000 %E A054844 Corrected and extended by _Michael Somos_, Apr 26 2000