cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054859 Smallest positive integer that can be expressed as the sum of consecutive primes in exactly n ways.

This page as a plain text file.
%I A054859 #41 Feb 17 2022 03:56:30
%S A054859 1,2,5,41,1151,311,34421,218918,3634531,48205429,1798467197,
%T A054859 12941709050,166400805323,6123584726269
%N A054859 Smallest positive integer that can be expressed as the sum of consecutive primes in exactly n ways.
%C A054859 a(10)-a(12) found by Wilfred Whiteside in 2007. - _Giovanni Resta_, May 07 2020
%D A054859 R. K. Guy, Unsolved Problems In Number Theory, C2.
%H A054859 Leo Moser, <a href="https://doi.org/10.4153/CMB-1963-013-1">Notes on number theory. III. On the sum of consecutive primes</a>, Canad. Math. Bull. 6 (1963), pp. 159-161.
%H A054859 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_046.htm">Puzzle 46. Primes expressible as sum of consecutive primes in K ways</a>, The Prime Puzzles and Problems Connection.
%e A054859 41 = 41 = 11+13+17 = 2+3+5+7+11+13, 41 is the smallest number expressible in 3 ways, so a(3)=41.
%e A054859 From _Robert G. Wilson v_, Feb 21 2011: (Start)
%e A054859 a(0) = 1 because 1 cannot be expressed as the sum of any set of consecutive primes,
%e A054859 a(1) = 2 because 2 is the first prime,
%e A054859 a(2) = 5 because 2+3 = 5,
%e A054859 a(4) = 1151 because 7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101 = 223+227+229+233+239 = 379+383+389 = 1151,
%e A054859 a(5) = 311 because 11+13+17+19+23+29+31+37+41+43+47 = 31+37+41+43+47+53+59 = 53+59+61+67+71 = 101+103+107 = 311,
%e A054859 a(6) = 34421 because  269+271+...+701+709 = 1429+1433+...+1567+1571 = 3793+3797+3803+3821+3823+3833+3847+3851+3853 = 4889+4903+4909+4919+4931+4933+4937 = 11467+11471+11483 = 34421,
%e A054859 a(7) = 218918 because 3301+3307+...+3767+3769 = 4561+4567+...+4951+4957 = 5623+5639+...+5881+5897 = 7691+7699+...+7933+7937 = 9851+9857+...+10067+10069  = 13619+13627+...+13723+13729 = 18199+18211+...+18287+18289,
%e A054859 a(8) = 3634531 because 313+317+...+7873+7877 = 977+983+...+7933+7937 = 31567+31573+...+32707+32713 = 70997+70999+...+71479+71483 = 73897+73907+...+74413+74419 = 172969+172973+...+173189+173191 = 519161+519193+...+519247+519257 = 3634531,
%e A054859 a(9) = 48205429 because 124291+124297+...+128747+128749 = 176303+176317+...+179453+179461 = 331537+331543+...+333383+333397 = 433577+433607+...+434933+434939 = 541061+541087+...+542141+542149 = 2536943+2536991+...+2537303+2537323 = 16068461+16068469+16068499 = 48205429, etc. (End)
%e A054859 From _Giovanni Resta_, May 07 2020: (Start)
%e A054859 The runs of primes corresponding to a(10)-a(13), in the format first prime (run length), are:
%e A054859 a(10) = 1798467197 (1), 599489047 (3), 51384499 (35), 41824483 (43), 14862469 (121), 2233859 (803), 1652909 (1083), 742243 (2371), 280591 (5683), 118297 (10073);
%e A054859 a(11) = 6470854519 (2), 2156951369 (6), 431390039 (30), 323542441 (40), 71896949 (180), 56266367 (230), 5574659 (2314), 4481189 (2874), 3547639 (3620), 1487399 (8366), 993197 (12024);
%e A054859 a(12) = 166400805323 (1), 55466935091 (3), 18488978293 (9), 3025468583 (55), 155650259 (1069), 135604109 (1227), 50227297 (3311), 29640257 (5605), 19365569 (8561), 6284627 (25655), 3188819 (46977), 429467 (127483);
%e A054859 a(13) = 6123584726269 (1), 360210866021 (17), 197534990813 (31), 124971116311 (49), 48217200953 (127), 40023427859 (153), 21188870723 (289), 13225879553 (463), 6166740911 (993), 3642804197 (1681), 2232410683 (2743), 992896649 (6167), 17062531 (311319). (End)
%t A054859 lmt = 500000000; p = Prime@ Range@ PrimePi@ lmt; t = Table[0, {lmt}]; Do[s = 0; j = i; While[s = s + p[[j]]; s <= lmt, t[[s]]++; j++], {i, Length@ p}]; Table[ Position[t, n, 1, 1], {n, 0, 0}] (* _Robert G. Wilson v_, Feb 21 2011 *)
%Y A054859 Cf. A054845, A067381.
%K A054859 nonn,hard,more
%O A054859 0,2
%A A054859 _Jud McCranie_, May 25 2000
%E A054859 a(10)-a(11) from _Bert Dobbelaere_, Apr 14 2020
%E A054859 a(12)-a(13) from _Giovanni Resta_, May 07 2020