cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054869 Digits of an idempotent 6-adic number.

Original entry on oeis.org

3, 1, 2, 0, 5, 3, 1, 2, 2, 2, 5, 1, 5, 5, 1, 4, 1, 3, 1, 2, 5, 5, 5, 0, 5, 2, 5, 5, 5, 3, 1, 4, 3, 3, 0, 4, 2, 2, 4, 0, 1, 3, 3, 1, 4, 0, 2, 0, 1, 2, 5, 2, 4, 0, 2, 3, 3, 0, 3, 4, 5, 5, 2, 5, 5, 4, 3, 2, 3, 1, 5, 4, 5, 4, 0, 1, 1, 0, 4, 2, 0, 1, 3, 0, 1, 5, 0, 4, 3, 5, 0, 1, 0, 2, 4, 0, 3, 4, 2
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

( a(0) + a(1)*6 + a(2)*6^2 + ... )^k = a(0) + a(1)*6 + a(2)*6^2 + ... for each k. Apart from 0 and 1, in base 6 there are only 2 numbers with this property. For the other see A055620.

References

  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

Crossrefs

The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • Python
    n=10000;res=1-pow((3**n+1)//2,n,3**n)*2**n
    for i in range(n):print(i,res%6);res//=6
    # Kenny Lau, Jun 09 2018

Formula

a(n) == 3^(2^n) (mod 6^n). - Robert Dawson, Oct 28 2022