This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054881 #69 Feb 07 2023 17:53:16 %S A054881 1,0,4,8,48,160,704,2688,11008,43520,175104,698368,2797568,11182080, %T A054881 44744704,178946048,715849728,2863267840,11453333504,45812809728, %U A054881 183252287488,733007052800,2932032405504,11728121233408 %N A054881 Number of walks of length n along the edges of an octahedron starting and ending at a vertex and also ( with a(0)=0 ) between two opposite vertices. %H A054881 Vincenzo Librandi, <a href="/A054881/b054881.txt">Table of n, a(n) for n = 0..1000</a> %H A054881 R. J. Mathar, <a href="/A102518/a102518.pdf">Counting Walks on Finite Graphs</a>, Nov 2020, Section 7. %H A054881 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,8). %F A054881 a(n) = 4*A003683(n-1) + 0^n/2, n >= 0. %F A054881 a(n) = (4^n + (-1)^n*2^(n+1) + 3*0^n)/6. %F A054881 G.f.: (1/6)*(3 + 2/(1+2*x) + 1/(1-4*x)). %F A054881 From _L. Edson Jeffery_, Apr 22 2015: (Start) %F A054881 G.f.: (1-2*x-4*x^2)/((1+2*x)*(1-4*x)). %F A054881 a(n) = 8*A246036(n-3) + 0^n/2, n >= 0. (End) %F A054881 a(n) = 2^n*A001045(n-1) + (1/2)*[n=0] = 2^n*(2^(n-1) + (-1)^n)/3 + (1/2)*[n=0], n >= 0. - _Ralf Steiner_, Aug 27 2020, edited by _M. F. Hasler_, Sep 11 2020 %F A054881 E.g.f.: (1/6)*(exp(4*x) + 2*exp(-2*x) + 3). - _G. C. Greubel_, Feb 06 2023 %t A054881 CoefficientList[Series[(1-2*x-4*x^2)/((1+2x)*(1-4x)), {x,0,40}], x] (* _L. Edson Jeffery_, Apr 22 2015 *) %t A054881 LinearRecurrence[{2,8}, {1,0,4}, 41] (* _G. C. Greubel_, Feb 06 2023 *) %o A054881 (Magma) [(4^n+(-1)^n*2^(n+1)+3*0^n)/6: n in [0..30]]; // _Vincenzo Librandi_, Apr 23 2015 %o A054881 (SageMath) [(4^n + (-1)^n*2^(n+1) + 3*0^n)/6 for n in range(31)] # _G. C. Greubel_, Feb 06 2023 %Y A054881 Cf. A001045, A003683, A054882, A054883, A054884, A054885, A246036. %K A054881 nonn,walk,easy %O A054881 0,3 %A A054881 Paolo Dominici (pl.dm(AT)libero.it), May 23 2000