This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054895 #33 Feb 09 2023 14:20:11 %S A054895 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5, %T A054895 5,5,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11, %U A054895 11,11,11,12,12,12,12,12,12,14,14,14,14,14,14,15,15,15,15,15,15,16,16,16 %N A054895 a(n) = Sum_{k>0} floor(n/6^k). %C A054895 Different from the highest power of 6 dividing n! (cf. A054861). - _Hieronymus Fischer_, Aug 14 2007 %C A054895 Partial sums of A122841. - _Hieronymus Fischer_, Jun 06 2012 %H A054895 Hieronymus Fischer, <a href="/A054895/b054895.txt">Table of n, a(n) for n = 0..10000</a> %F A054895 a(n) = floor(n/6) + floor(n/36) + floor(n/216) + floor(n/1296) + ... %F A054895 a(n) = (n - A053827(n))/5. %F A054895 From _Hieronymus Fischer_, Aug 14 2007: (Start) %F A054895 a(n) = a(floor(n/6)) + floor(n/6). %F A054895 a(6*n) = n + a(n). %F A054895 a(n*6^m) = n*(6^m-1)/5 + a(n). %F A054895 a(k*6^m) = k*(6^m-1)/5, for 0 <= k < 6, m >= 0. %F A054895 Asymptotic behavior: %F A054895 a(n) = (n/5) + O(log(n)). %F A054895 a(n+1) - a(n) = O(log(n)); this follows from the inequalities below. %F A054895 a(n) <= (n-1)/5; equality holds for powers of 6. %F A054895 a(n) >= ((n-5)/5) - floor(log_6(n)); equality holds for n=6^m-1, m>0. %F A054895 lim inf (n/5 - a(n)) = 1/5, for n-->oo. %F A054895 lim sup (n/5 - log_6(n) - a(n)) = 0, for n-->oo. %F A054895 lim sup (a(n+1) - a(n) - log_6(n)) = 0, for n-->oo. %F A054895 G.f.: (1/(1-x))*Sum_{k > 0} x^(6^k)/(1-x^(6^k)). (End) %e A054895 a(10^0) = 0. %e A054895 a(10^1) = 1. %e A054895 a(10^2) = 18. %e A054895 a(10^3) = 197. %e A054895 a(10^4) = 1997. %e A054895 a(10^5) = 19996. %e A054895 a(10^6) = 199995. %e A054895 a(10^7) = 1999995. %e A054895 a(10^8) = 19999994. %e A054895 a(10^9) = 199999993. %t A054895 Table[t=0; p=6; While[s=Floor[n/p]; t=t+s; s>0, p *= 6]; t, {n,0,100}] %o A054895 (Haskell) %o A054895 a054895 n = a054895_list !! n %o A054895 a054895_list = scanl (+) 0 a122841_list %o A054895 -- _Reinhard Zumkeller_, Nov 10 2013 %o A054895 (Magma) %o A054895 function A054895(n) %o A054895 if n eq 0 then return n; %o A054895 else return A054895(Floor(n/6)) + Floor(n/6); %o A054895 end if; return A054895; %o A054895 end function; %o A054895 [A054895(n): n in [0..100]]; // _G. C. Greubel_, Feb 09 2023 %o A054895 (SageMath) %o A054895 def A054895(n): %o A054895 if (n==0): return 0 %o A054895 else: return A054895(n//6) + (n//6) %o A054895 [A054895(n) for n in range(104)] # _G. C. Greubel_, Feb 09 2023 %Y A054895 Cf. A011371 and A054861 for analogs involving powers of 2 and 3. %Y A054895 Cf. A053827, A054861, A054899, A067080, A098844, A122841, A132030. %K A054895 nonn %O A054895 0,13 %A A054895 _Henry Bottomley_, May 23 2000 %E A054895 An incorrect formula was deleted by _N. J. A. Sloane_, Nov 18 2008 %E A054895 Examples added by _Hieronymus Fischer_, Jun 06 2012