This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054924 #29 Apr 30 2022 08:21:45 %S A054924 1,0,1,0,0,1,1,0,0,0,2,2,1,1,0,0,0,0,3,5,5,4,2,1,1,0,0,0,0,0,6,13,19, %T A054924 22,20,14,9,5,2,1,1,0,0,0,0,0,0,11,33,67,107,132,138,126,95,64,40,21, %U A054924 10,5,2,1,1,0,0,0,0,0,0,0,23,89,236,486,814,1169,1454,1579,1515,1290,970,658,400,220,114 %N A054924 Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled connected graphs with n nodes and k edges (n >= 1, 0 <= k <= n(n-1)/2). %D A054924 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976. %H A054924 R. W. Robinson, <a href="/A054924/b054924.txt">Rows 1 to 20 of triangle, flattened</a> (corrected by Sean A. Irvine, Apr 29 2022) %H A054924 G. A. Baker et al., <a href="http://dx.doi.org/10.1103/PhysRev.164.800">High-temperature expansions for the spin-1/2 Heisenberg model</a>, Phys. Rev., 164 (1967), 800-817. %H A054924 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a054/A054924.java">Java code</a> (github) %H A054924 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/graphs/">Small graphs</a> %H A054924 M. L. Stein and P. R. Stein, <a href="http://dx.doi.org/10.2172/4180737">Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points</a>. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967 %e A054924 Triangle begins: %e A054924 1; %e A054924 0,1; %e A054924 0,0,1,1; %e A054924 0,0,0,2,2,1,1; %e A054924 0,0,0,0,3,5,5,4,2,1,1; %e A054924 0,0,0,0,0,6,13,19,22,20,14,9,5,2,1,1; %e A054924 the last batch giving the numbers of connected graphs with 6 nodes and from 0 to 15 edges. %t A054924 A076263 gives a Mathematica program which produces the nonzero entries in each row. %t A054924 Needs["Combinatorica`"]; Table[Print[row = Join[Array[0&, n-1], Table[ Count[ Combinatorica`ListGraphs[n, k], g_ /; Combinatorica`ConnectedQ[g]], {k, n-1, n*(n-1)/2}]]]; row, {n, 1, 8}] // Flatten (* _Jean-François Alcover_, Jan 15 2015 *) %Y A054924 Cf. A008406, A054925. %Y A054924 Other versions of this triangle: A046751, A076263, A054923, A046742. %Y A054924 Row sums give A001349, column sums give A002905. A046751 is essentially the same triangle. A054923 and A046742 give same triangle but read by columns. %Y A054924 Main diagonal is A000055. Next diagonal is A001429. Largest entry in each row gives A001437. %K A054924 nonn,easy,nice,tabf %O A054924 1,11 %A A054924 _N. J. A. Sloane_