This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054952 #25 Jan 14 2022 23:19:34 %S A054952 1,1,6,88,5136,1052154,706474926,1581054875274,12140605885784816, %T A054952 328173091958855376334,31831409045512513121561226, %U A054952 11234306828778006073392046869300,14576263867446651299709243211339018934,70075728362101598938266196294267261948879446 %N A054952 Number of unlabeled semi-strong digraphs on n nodes with pairwise different components. %C A054952 Weigh transform of A035512. - _Andrew Howroyd_, Sep 10 2018 %C A054952 A digraph is semi-strong if all its weakly connected components are strongly connected. - _Andrew Howroyd_, Jan 14 2022 %H A054952 Andrew Howroyd, <a href="/A054952/b054952.txt">Table of n, a(n) for n = 1..50</a> %H A054952 V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2. %F A054952 G.f.: -1 + Product_{n > 0} (1 + x^n)^A035512(n). - _Andrew Howroyd_, Sep 10 2018 %t A054952 m = 15; %t A054952 A035512 = Cases[Import["https://oeis.org/A035512/b035512.txt", "Table"], {_, _}][[All, 2]]; %t A054952 gf = -1 + Product[(1 + x^n)^A035512[[n + 1]], {n, 1, m}]; %t A054952 CoefficientList[gf + O[x]^m , x] // Rest (* _Jean-François Alcover_, Aug 26 2019, after _Andrew Howroyd_ *) %Y A054952 Cf. A035512, A054951, A054953, A054954. %K A054952 nonn,easy %O A054952 1,3 %A A054952 _N. J. A. Sloane_, May 24 2000 %E A054952 More terms from _Vladeta Jovovic_, Mar 11 2003 %E A054952 a(12)-a(14) from _Andrew Howroyd_, Sep 10 2018