This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A054966 #25 Jul 19 2024 09:39:50 %S A054966 0,1,8,9,10,17,18,19,26,27,28,35,36,37,44,45,46,53,54,55,62,63,64,71, %T A054966 72,73,80,81,82,89,90,91,98,99,100,107,108,109,116,117,118,125,126, %U A054966 127,134,135,136,143,144,145,152,153,154,161,162,163,170,171,172,179,180 %N A054966 Numbers that are congruent to {0, 1, 8} mod 9. %C A054966 n == n^3 mod 9, so the iterated sum of the decimal digits of n and n^3 are equal. %D A054966 H. I. Okagbue, M.O.Adamu, S.A. Bishop and A.A. Opanuga, Properties of Sequences Generated by Summing the Digits of Cubed Positive Integers, Indian Journal Of Natural Sciences, Vol. 6 / Issue 32 / October 2015 %H A054966 Vincenzo Librandi, <a href="/A054966/b054966.txt">Table of n, a(n) for n = 1..1000</a> %H A054966 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1). %F A054966 G.f.: x^2*(1+7*x+x^2) / ((1+x+x^2)*(x-1)^2). - _R. J. Mathar_, Oct 08 2011 %F A054966 From _Wesley Ivan Hurt_, Jun 14 2016: (Start) %F A054966 a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. %F A054966 a(n) = 3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3). %F A054966 a(3k) = 9k-1, a(3k-1) = 9k-8, a(3k-2) = 9k-9. (End) %F A054966 A008591 UNION A056020. - _R. J. Mathar_, Jul 19 2024 %F A054966 a(n) -a(n-1) = A105395(n+1), n>1. - _R. J. Mathar_, Jul 19 2024 %p A054966 A054966:=n->3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3): seq(A054966(n), n=1..100); # _Wesley Ivan Hurt_, Jun 14 2016 %t A054966 Select[Range[0, 200], MemberQ[{0, 1, 8}, Mod[#, 9]] &] (* _Wesley Ivan Hurt_, Jun 14 2016 *) %t A054966 LinearRecurrence[{1, 0, 1, -1}, {0, 1, 8, 9}, 100] (* _Vincenzo Librandi_, Jun 15 2016 *) %o A054966 (Magma) [n : n in [0..200] | n mod 9 in [0, 1, 8]]; // _Wesley Ivan Hurt_, Jun 14 2016 %Y A054966 Cf. A047523. Complement of A275910. %K A054966 nonn,easy %O A054966 1,3 %A A054966 _Henry Bottomley_, May 24 2000