cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054993 Number of "long curves", i.e., topological types of smooth embeddings of the oriented real line into the oriented plane that coincide with the standard immersion x -> (x,0) in the neighborhood of -infinity and +infinity.

This page as a plain text file.
%I A054993 #45 Jan 22 2025 00:08:09
%S A054993 1,2,8,42,260,1796,13396,105706,870772,7420836,65004584,582521748,
%T A054993 5320936416,49402687392,465189744448,4434492302426,42731740126228,
%U A054993 415736458808868,4079436831493480,40338413922226212,401652846850965808,4024556509468827432,40558226664529024000,410887438338905738908,4182776248940752113344,42770152711524569532616,439143340987014152920384,4526179842103708969039296
%N A054993 Number of "long curves", i.e., topological types of smooth embeddings of the oriented real line into the oriented plane that coincide with the standard immersion x -> (x,0) in the neighborhood of -infinity and +infinity.
%C A054993 Also the number of knot diagrams with n crossings and two outgoing strings.
%D A054993 V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
%D A054993 S. M. Gusein-Zade, On the enumeration of curves from infinity to infinity, in: Singularities and Bifurcations, Adv. Sov. Math., v. 21 (1994), pp. 189-198.
%H A054993 Steven R. Finch, <a href="/A002863/a002863_4.pdf">Knots, links and tangles</a>, August 8, 2003. [Cached copy, with permission of the author]
%H A054993 S. M. Gusein-Zade and F. S. Duzhin, <a href="http://dx.doi.org/10.4213/rm48">On the number of topological types of plane curves</a>; (Russian) Uspekhi Mat. Nauk 53 (1998), no. 3(321), 197-198. <a href="http://dx.doi.org/10.1070/RM1998v053n03ABEH000048">English translation</a>: Russian Mathematical Surveys 53 (1998) 626-627. <a href="http://www.pdmi.ras.ru/~arnsem/dataprog/">Related program and data</a>.
%H A054993 J. L. Jacobsen and P. Zinn-Justin, <a href="http://arXiv.org/abs/math-ph/0102015">A Transfer Matrix approach to the Enumeration of Knots</a>
%H A054993 J. L. Jacobsen and P. Zinn-Justin, <a href="http://arXiv.org/abs/math-ph/0104009">A Transfer Matrix approach to the Enumeration of Colored Links</a>, J. Knot Theory, 10 (2001), 1233-1267.
%H A054993 Christoph Lamm, <a href="https://arxiv.org/abs/2410.06601">The enumeration of doubly symmetric diagrams for strongly positive amphicheiral knots</a>, arXiv:2410.06601 [math.GT], 2024. See p. 14.
%H A054993 P. Zinn-Justin and J.-B. Zuber, <a href="https://arxiv.org/abs/1006.1812">Knot theory and matrix integrals</a>, arXiv:1006.1812 [math-ph], 2010.
%H A054993 <a href="/index/K#knots">Index entries for sequences related to knots</a>
%Y A054993 Cf. A008980, A008981, A008982, A008983, A008984, A008985.
%Y A054993 A151374 enumerates the long curves having Gauss diagrams without intersections, cf. A118814.
%Y A054993 Cf. A067647, A067648.
%Y A054993 A column of the triangles in A067640 and A062038.
%K A054993 nonn,nice
%O A054993 0,2
%A A054993 _Sergei Duzhin_, Nov 11 2000
%E A054993 Extended to n = 22 by J. L. Jacobsen and _Paul Zinn-Justin_, Jan 30 2002
%E A054993 More terms from _Paul Zinn-Justin_, Dec 13 2016