cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054998 Integers that can be expressed as the sum of consecutive primes in exactly 3 ways.

This page as a plain text file.
%I A054998 #24 Sep 20 2023 15:58:08
%S A054998 41,83,197,199,223,240,251,281,287,340,371,401,439,491,510,593,660,
%T A054998 733,803,857,864,883,931,941,961,983,990,991,1012,1060,1061,1099,1104,
%U A054998 1187,1236,1283,1313,1361,1381,1392,1433,1439,1493,1511,1523,1524,1553
%N A054998 Integers that can be expressed as the sum of consecutive primes in exactly 3 ways.
%D A054998 R. K. Guy, Unsolved Problems in Number Theory, section C2.
%H A054998 Robert Israel, <a href="/A054998/b054998.txt">Table of n, a(n) for n = 1..10000</a>
%H A054998 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_046.htm">Puzzle 46. Primes expressible as sum of consecutive primes in K ways</a>, The Prime Puzzles and Problems Connection.
%F A054998 A054845(a(n)) = 3. - _Ray Chandler_, Sep 20 2023
%e A054998 41 can be expressed as 41 or 11+13+17 or 2+3+5+7+11+13, so 41 is in the sequence.
%p A054998 N:= 10^4: # to get all terms <= N
%p A054998 P:= [0,op(select(isprime, [2,seq(i,i=3..N,2)]))]:
%p A054998 nP:= nops(P);
%p A054998 S:= ListTools:-PartialSums(P):
%p A054998 V:= Vector(N):
%p A054998 for i from 1 to nP-1 do
%p A054998   for j from i+1 to nP while S[j] - S[i] <= N do
%p A054998      V[S[j]-S[i]]:= V[S[j]-S[i]]+1
%p A054998 od od:
%p A054998 select(t -> V[t] = 3, [$1..N]): # _Robert Israel_, Apr 05 2017
%t A054998 Module[{nn = 300, s}, s = Array[Prime, nn]; Keys@ Take[Select[KeySort@ Merge[Table[PositionIndex@ Map[Total, Partition[s, k, 1]], {k, nn/2}], Identity], Length@ # == 3 &], Floor[nn/6]]] (* _Michael De Vlieger_, Apr 06 2017, Version 10 *)
%Y A054998 Cf. A054845, A054859, A054996, A054997, A054999, A055500, A055001.
%K A054998 nonn
%O A054998 1,1
%A A054998 _Jud McCranie_, May 30 2000