This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055023 #17 Jun 27 2025 20:28:45 %S A055023 1,2,3,1,5,2,7,1,1,2,11,1,13,2,1,1,17,2,19,1,3,2,23,1,1,2,1,1,29,2,31, %T A055023 1,1,2,1,1,37,2,3,1,41,2,43,1,1,2,47,1,1,2,1,1,53,2,1,1,3,2,59,1,61,2, %U A055023 1,1,1,2,67,1,1,2,71,1,73,2,3,1,1,2,79,1,1,2,83,1,1 %N A055023 a(n) = n/A055032(n). %C A055023 It is conjectured that this is n iff n is 1 or a prime. %D A055023 R. K. Guy, Unsolved Problems Number Theory, A17. %H A055023 Indranil Ghosh, <a href="/A055023/b055023.txt">Table of n, a(n) for n = 1..1000</a> %t A055023 Table[n/Denominator[(Sum[m^(n - 1), {m, n - 1}] + 1)/n], {n, 10}] (* _Indranil Ghosh_, May 17 2017 *) %o A055023 (PARI) a(n) = n/denominator((sum(m=1, n - 1, m^(n - 1)) + 1)/n); \\ _Indranil Ghosh_, May 17 2017 %o A055023 (Python) %o A055023 from sympy import Integer %o A055023 def a(n): return Integer(n)/((sum(m**(n - 1) for m in range(1, n)) + 1)/Integer(n)).denominator # _Indranil Ghosh_, May 17 2017 %Y A055023 Cf. A055030, A055031, A055032, A201560, A204187. %K A055023 nonn %O A055023 1,2 %A A055023 _N. J. A. Sloane_, Jun 11 2000