A055025 Norms of Gaussian primes.
2, 5, 9, 13, 17, 29, 37, 41, 49, 53, 61, 73, 89, 97, 101, 109, 113, 121, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 361, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 529, 541, 557, 569
Offset: 1
Examples
There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i). In A239621 2+i is listed as 2, 1.
References
- R. K. Guy, Unsolved Problems in Number Theory, A16.
- L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Eric Weisstein's World of Mathematics, Gaussian prime
- Wikipedia, Table of Gaussian integer factorizations
- Index entries for Gaussian integers and primes
Crossrefs
Programs
-
Mathematica
Union[(#*Conjugate[#] & )[ Select[Flatten[Table[a + b*I, {a, 0, 23}, {b, 0, 23}]], PrimeQ[#, GaussianIntegers -> True] & ]]][[1 ;; 55]] (* Jean-François Alcover, Apr 08 2011 *) (* Or, from formula: *) maxNorm = 569; s1 = Select[Range[1, maxNorm, 4], PrimeQ]; s3 = Select[Range[3, Sqrt[maxNorm], 4], PrimeQ]^2; Union[{2}, s1, s3] (* Jean-François Alcover, Dec 07 2012 *)
-
PARI
list(lim)=my(v=List()); if(lim>=2, listput(v,2)); forprime(p=3,sqrtint(lim\1), if(p%4==3, listput(v,p^2))); forprime(p=5,lim, if(p%4==1, listput(v,p))); Set(v) \\ Charles R Greathouse IV, Feb 06 2017
-
PARI
isA055025(n)=(isprime(n) && n%4<3) || (issquare(n, &n) && isprime(n) && n%4==3) \\ Jianing Song, Aug 15 2023, based on Charles R Greathouse IV's program for A055664
Formula
Consists of 2; rational primes = 1 (mod 4) [A002144]; and squares of rational primes = 3 (mod 4) [A002145^2].
a(n) ~ 2n log n. - Charles R Greathouse IV, Feb 06 2017
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
Comments