This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055026 #16 Oct 30 2022 18:19:59 %S A055026 4,8,4,8,8,8,8,8,4,8,8,8,8,8,8,8,8,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, %T A055026 8,8,8,8,4,8,8,8,8,8,8,8,8,8,8,8,8,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, %U A055026 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,4,8,8 %N A055026 Number of Gaussian primes of successive norms (indexed by A055025). %C A055026 These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1). %D A055026 R. K. Guy, Unsolved Problems in Number Theory, A16. %D A055026 L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V. %H A055026 <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a> %e A055026 There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i). %t A055026 m = 32; Length /@ Split[Sort[Select[Flatten[Table[{a^2 + b^2, a + b*I}, {a, -m, m}, {b, -m, m}], 1], PrimeQ[#[[2]], GaussianIntegers -> True] & ]], #1[[1]] == #2[[1]] & ][[1 ;; 87]] (* _Jean-François Alcover_, Apr 08 2011 *) %Y A055026 Cf. A055025-A055029, A055664-... %K A055026 nonn,easy,nice %O A055026 1,1 %A A055026 _N. J. A. Sloane_, Jun 09 2000 %E A055026 More terms from _Reiner Martin_, Jul 20 2001