This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055027 #10 Oct 30 2022 18:19:59 %S A055027 1,2,1,2,2,2,2,2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A055027 2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %U A055027 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2 %N A055027 Number of inequivalent Gaussian primes of successive norms (indexed by A055025). %C A055027 These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1). %C A055027 Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-i). %D A055027 R. K. Guy, Unsolved Problems in Number Theory, A16. %D A055027 L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V. %H A055027 <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a> %e A055027 There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i). %t A055027 norms = Union[ #*Conjugate[#]& [ Select[ Flatten[ Table[a + b*I, {a, 0, 31}, {b, 0, 31}]], PrimeQ[#, GaussianIntegers -> True] &]]]; f[norm_] := (Clear[a, b]; primes = {a + b*I} /. {ToRules[ Reduce[a^2 + b^2 == norm, {a, b}, Integers]]}; primes //. {p1___, p2_, p3___, p4_, p5___} /; MatchQ[p2, (-p4 | I*p4 | -I*p4)] :> {p1, p2, p3, p5} // Length); A055027 = f /@ norms (* _Jean-François Alcover_, Nov 30 2012 *) %Y A055027 Cf. A055025-A055029, A055664-... %K A055027 nonn,easy,nice %O A055027 1,2 %A A055027 _N. J. A. Sloane_, Jun 09 2000 %E A055027 More terms from _Reiner Martin_, Jul 20 2001