cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055027 Number of inequivalent Gaussian primes of successive norms (indexed by A055025).

This page as a plain text file.
%I A055027 #10 Oct 30 2022 18:19:59
%S A055027 1,2,1,2,2,2,2,2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%T A055027 2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U A055027 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2
%N A055027 Number of inequivalent Gaussian primes of successive norms (indexed by A055025).
%C A055027 These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1).
%C A055027 Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-i).
%D A055027 R. K. Guy, Unsolved Problems in Number Theory, A16.
%D A055027 L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
%H A055027 <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a>
%e A055027 There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i).
%t A055027 norms = Union[ #*Conjugate[#]& [ Select[ Flatten[ Table[a + b*I, {a, 0, 31}, {b, 0, 31}]], PrimeQ[#, GaussianIntegers -> True] &]]]; f[norm_] := (Clear[a, b]; primes = {a + b*I} /. {ToRules[ Reduce[a^2 + b^2 == norm, {a, b}, Integers]]}; primes //. {p1___, p2_, p3___, p4_, p5___} /; MatchQ[p2, (-p4 | I*p4 | -I*p4)] :> {p1, p2, p3, p5} // Length); A055027 = f /@ norms (* _Jean-François Alcover_, Nov 30 2012 *)
%Y A055027 Cf. A055025-A055029, A055664-...
%K A055027 nonn,easy,nice
%O A055027 1,2
%A A055027 _N. J. A. Sloane_, Jun 09 2000
%E A055027 More terms from _Reiner Martin_, Jul 20 2001