This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055039 #48 Mar 30 2025 03:11:33 %S A055039 14,30,46,56,62,78,94,110,120,126,142,158,174,184,190,206,222,224,238, %T A055039 248,254,270,286,302,312,318,334,350,366,376,382,398,414,430,440,446, %U A055039 462,478,480,494,504,510,526,542,558,568,574,590,606,622 %N A055039 Numbers of the form 2^(2i+1)*(8j+7). %C A055039 The numbers not of the form x^2+y^2+2z^2. %C A055039 Numbers of the form 6*x^2 + 8*x^2*(2*y -1). (Steve Waterman). %C A055039 These are the numbers not occurring as norms in the face-centered cubic lattice (cf. A004015). %C A055039 Numbers whose base 4 representation ends in 3,2 followed by some number of zeros. - _Franklin T. Adams-Watters_, Dec 04 2006 %C A055039 Numbers k such that the k-th coefficient of eta(x)^4/eta(x^4) is 0 where eta is the Dedekind eta function. - _Benoit Cloitre_, Mar 15 2025 %C A055039 The asymptotic density of this sequence is 1/12. - _Amiram Eldar_, Mar 29 2025 %H A055039 T. D. Noe, <a href="/A055039/b055039.txt">Table of n, a(n) for n=1..10000</a> %H A055039 L. E. Dickson, <a href="http://dx.doi.org/10.1090/S0002-9904-1927-04312-9">Integers represented by positive ternary quadratic forms</a>, Bull. Amer. Math. Soc. 33 (1927), 63-70. %H A055039 L. J. Mordell, <a href="http://dx.doi.org/10.1093/qmath/os-1.1.276">A new Waring's problem with squares of linear forms</a>, Quart. J. Math., 1 (1930), 276-288 (see p. 283). %H A055039 Steve Waterman, <a href="http://watermanpolyhedron.com/MISSING.html">Missing numbers formula</a>. %e A055039 In base 4: 32, 132, 232, 320, 332, 1032, 1132, 1232, 1320, 1332, 2032, ... %t A055039 Select[Range[650], Mod[# / 4^IntegerExponent[#, 4], 16] == 14 &] (* _Amiram Eldar_, Mar 29 2025 *) %o A055039 (Python) %o A055039 from itertools import count, islice %o A055039 def A055039_gen(startvalue=1): # generator of terms >= startvalue %o A055039 return filter(lambda n:(m:=(~n&n-1).bit_length())&1 and (n>>m)&7==7,count(max(startvalue,1))) %o A055039 A055039_list = list(islice(A055039_gen(),30)) # _Chai Wah Wu_, Jul 09 2022 %o A055039 (Python) %o A055039 def A055039(n): %o A055039 def bisection(f,kmin=0,kmax=1): %o A055039 while f(kmax) > kmax: kmax <<= 1 %o A055039 kmin = kmax >> 1 %o A055039 while kmax-kmin > 1: %o A055039 kmid = kmax+kmin>>1 %o A055039 if f(kmid) <= kmid: %o A055039 kmax = kmid %o A055039 else: %o A055039 kmin = kmid %o A055039 return kmax %o A055039 def f(x): return n+x-sum(((x>>i)-7>>3)+1 for i in range(1,x.bit_length(),2)) %o A055039 return bisection(f,n,n) # _Chai Wah Wu_, Feb 24 2025 %Y A055039 Equals twice A004215. Not the same as A044075 - see A124169. %Y A055039 Complement of A000401. %Y A055039 Cf. A004015. %K A055039 nonn,easy %O A055039 1,1 %A A055039 _N. J. A. Sloane_, Jun 01 2000