This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055040 #29 Feb 14 2025 17:30:01 %S A055040 6,15,24,33,42,51,54,60,69,78,87,96,105,114,123,132,135,141,150,159, %T A055040 168,177,186,195,204,213,216,222,231,240,249,258,267,276,285,294,297, %U A055040 303,312,321,330,339,348,357,366,375,378,384,393,402,411 %N A055040 Numbers of the form 3^(2i+1)*(3*j+2). %C A055040 Numbers not of the form x^2+y^2+3z^2. %C A055040 Numbers whose squarefree part is congruent to 6 modulo 9. - _Peter Munn_, May 17 2020 %C A055040 The asymptotic density of this sequence is 1/8. - _Amiram Eldar_, Mar 08 2021 %H A055040 Reinhard Zumkeller, <a href="/A055040/b055040.txt">Table of n, a(n) for n = 1..10000</a> %H A055040 L. J. Mordell, <a href="https://doi.org/10.1093/qmath/os-1.1.276">A new Waring's problem with squares of linear forms</a>, Quart. J. Math., 1 (1930), 276-288 (see p. 283). %F A055040 G.f.: [x(x+2)(x^2+x+1)(x^7+x^3+1)]/(x^11-x^10-x+1) (conjectured). %t A055040 max = 500; Select[ Union[ Flatten[ Table[3^(2*i + 1)*(3*j + 2), {i, 0, Ceiling[ Log[max/6]/Log[9]]}, {j, 0, Ceiling[(max/9^i - 6)/9]}]]], # <= max &] (* _Jean-François Alcover_, Oct 13 2011 *) %o A055040 (Haskell) %o A055040 a055040 n = a055040_list !! (n-1) %o A055040 a055040_list = map (* 3) a055048_list %o A055040 -- _Reinhard Zumkeller_, Apr 07 2012 %o A055040 (Python) %o A055040 from sympy import integer_log %o A055040 def A055040(n): %o A055040 def bisection(f,kmin=0,kmax=1): %o A055040 while f(kmax) > kmax: kmax <<= 1 %o A055040 kmin = kmax >> 1 %o A055040 while kmax-kmin > 1: %o A055040 kmid = kmax+kmin>>1 %o A055040 if f(kmid) <= kmid: %o A055040 kmax = kmid %o A055040 else: %o A055040 kmin = kmid %o A055040 return kmax %o A055040 def f(x): return n+x-sum((x//9**i-2)//3+1 for i in range(integer_log(x,9)[0]+1)) %o A055040 return bisection(f,n,n)*3 # _Chai Wah Wu_, Feb 14 2025 %Y A055040 Equals 3*A055048(n). %Y A055040 Intersection of A145204 and A189715. %Y A055040 Complement of A055041 with respect to A145204\{0}. %Y A055040 Complement of A055047 with respect to A189715. %Y A055040 Cf. A007913. %K A055040 nonn,nice %O A055040 1,1 %A A055040 _N. J. A. Sloane_, Jun 01 2000