This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055043 #25 Apr 21 2025 23:05:26 %S A055043 6,22,24,38,54,70,86,88,96,102,118,134,150,152,166,182,198,214,216, %T A055043 230,246,262,278,280,294,310,326,342,344,352,358,374,384,390,406,408, %U A055043 422,438,454,470,472,486,502,518,534,536,550,566,582,598 %N A055043 Numbers of the form 2^(2i+1)*(8*j+3). %C A055043 The asymptotic density of this sequence is 1/12. - _Amiram Eldar_, Mar 29 2025 %H A055043 Amiram Eldar, <a href="/A055043/b055043.txt">Table of n, a(n) for n = 1..10000</a> %H A055043 L. J. Mordell, <a href="https://doi.org/10.1093/qmath/os-1.1.276">A new Waring's problem with squares of linear forms</a>, Quart. J. Math., 1 (1930), 276-288 (see p. 283). %F A055043 a(n) = 2*A055046(n). - _Chai Wah Wu_, Mar 19 2025 %t A055043 f[upto_]:=Module[{maxi=Floor[(Log[2,upto]-1)/2],maxj= Floor[(upto-3)/8],s},s=2^(2First[#]+1) (8Last[#]+3)&/@ Tuples[{Range[0,maxi], Range[0,maxj]}];Union[Select[s,#<=upto&]]]; f[700] (* _Harvey P. Dale_, Mar 23 2011 *) %o A055043 (Python) %o A055043 def A055043(n): %o A055043 def bisection(f,kmin=0,kmax=1): %o A055043 while f(kmax) > kmax: kmax <<= 1 %o A055043 kmin = kmax >> 1 %o A055043 while kmax-kmin > 1: %o A055043 kmid = kmax+kmin>>1 %o A055043 if f(kmid) <= kmid: %o A055043 kmax = kmid %o A055043 else: %o A055043 kmin = kmid %o A055043 return kmax %o A055043 def f(x): return n+x-sum(((x>>(i<<1)+1)-3>>3)+1 for i in range(x.bit_length()-1>>1)) %o A055043 return bisection(f,n,n) # _Chai Wah Wu_, Mar 19 2025 %Y A055043 Cf. A055046. %K A055043 nonn,easy %O A055043 1,1 %A A055043 _N. J. A. Sloane_, Jun 01 2000