This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055044 #22 Apr 21 2025 23:05:30 %S A055044 2,8,18,32,34,50,66,72,82,98,114,128,130,136,146,162,178,194,200,210, %T A055044 226,242,258,264,274,288,290,306,322,328,338,354,370,386,392,402,418, %U A055044 434,450,456,466,482,498,512,514,520,530,544,546,562,578 %N A055044 Numbers of the form 2^(2i+1)*(8*j+1). %C A055044 The asymptotic density of this sequence is 1/12. - _Amiram Eldar_, Mar 29 2025 %H A055044 Amiram Eldar, <a href="/A055044/b055044.txt">Table of n, a(n) for n = 1..10000</a> %H A055044 L. J. Mordell, <a href="https://doi.org/10.1093/qmath/os-1.1.276">A new Waring's problem with squares of linear forms</a>, Quart. J. Math., 1 (1930), 276-288 (see p. 283). %F A055044 a(n) = 2*A234000(n). - _Chai Wah Wu_, Mar 19 2025 %t A055044 With[{max = 600}, Flatten[Table[2^(2*i + 1)*(8*j + 1), {i, 0, (Log2[max] - 1)/2}, {j, 0, Floor[(max/2^(2*i + 1) - 1)/8]}]] // Sort] (* _Amiram Eldar_, Mar 29 2025 *) %o A055044 (Python) %o A055044 def A055044(n): %o A055044 def bisection(f,kmin=0,kmax=1): %o A055044 while f(kmax) > kmax: kmax <<= 1 %o A055044 kmin = kmax >> 1 %o A055044 while kmax-kmin > 1: %o A055044 kmid = kmax+kmin>>1 %o A055044 if f(kmid) <= kmid: %o A055044 kmax = kmid %o A055044 else: %o A055044 kmin = kmid %o A055044 return kmax %o A055044 def f(x): return n+x-sum(((x>>(i<<1)+1)-1>>3)+1 for i in range(x.bit_length()+1>>1)) %o A055044 return bisection(f,n,n) # _Chai Wah Wu_, Mar 19 2025 %Y A055044 Cf. A234000. %K A055044 nonn,easy %O A055044 1,1 %A A055044 _N. J. A. Sloane_, Jun 01 2000