cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055046 Numbers of the form 4^i*(8*j+3).

Original entry on oeis.org

3, 11, 12, 19, 27, 35, 43, 44, 48, 51, 59, 67, 75, 76, 83, 91, 99, 107, 108, 115, 123, 131, 139, 140, 147, 155, 163, 171, 172, 176, 179, 187, 192, 195, 203, 204, 211, 219, 227, 235, 236, 243, 251, 259, 267, 268, 275, 283, 291, 299, 300, 304, 307, 315, 323, 331, 332
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2000

Keywords

Comments

Numbers not of the form x^2+y^2+5z^2.
Also values of n such that numbers of the form x^2+n*y^2 for some integers x, y cannot have prime factor of 2 raised to an odd power. - V. Raman, Dec 18 2013

Crossrefs

Programs

  • Mathematica
    A055046Q[k_] := Mod[k/4^IntegerExponent[k, 4], 8] == 3;
    Select[Range[500], A055046Q] (* Paolo Xausa, Mar 20 2025 *)
  • PARI
    is(n)=n/=4^valuation(n,4); n%8==3 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
    
  • Python
    from itertools import count, islice
    def A055046_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not (m:=(~n&n-1).bit_length())&1 and (n>>m)&7==3,count(max(startvalue,1)))
    A055046_list = list(islice(A055046_gen(),30)) # Chai Wah Wu, Jul 09 2022
    
  • Python
    def A055046(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x>>(i<<1))-3>>3)+1 for i in range(x.bit_length()>>1))
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

a(n) = 6n + O(log n). - Charles R Greathouse IV, Dec 19 2013
a(n) = A055043(n)/2. - Chai Wah Wu, Mar 19 2025