A055046 Numbers of the form 4^i*(8*j+3).
3, 11, 12, 19, 27, 35, 43, 44, 48, 51, 59, 67, 75, 76, 83, 91, 99, 107, 108, 115, 123, 131, 139, 140, 147, 155, 163, 171, 172, 176, 179, 187, 192, 195, 203, 204, 211, 219, 227, 235, 236, 243, 251, 259, 267, 268, 275, 283, 291, 299, 300, 304, 307, 315, 323, 331, 332
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
Programs
-
Mathematica
A055046Q[k_] := Mod[k/4^IntegerExponent[k, 4], 8] == 3; Select[Range[500], A055046Q] (* Paolo Xausa, Mar 20 2025 *)
-
PARI
is(n)=n/=4^valuation(n,4); n%8==3 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
-
Python
from itertools import count, islice def A055046_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:not (m:=(~n&n-1).bit_length())&1 and (n>>m)&7==3,count(max(startvalue,1))) A055046_list = list(islice(A055046_gen(),30)) # Chai Wah Wu, Jul 09 2022
-
Python
def A055046(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(((x>>(i<<1))-3>>3)+1 for i in range(x.bit_length()>>1)) return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025
Formula
a(n) = 6n + O(log n). - Charles R Greathouse IV, Dec 19 2013
a(n) = A055043(n)/2. - Chai Wah Wu, Mar 19 2025
Comments