This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055052 #27 Feb 14 2025 17:25:36 %S A055052 5,7,13,15,20,21,23,28,29,31,37,39,45,47,52,53,55,60,61,63,69,71,77, %T A055052 79,80,84,85,87,92,93,95,101,103,109,111,112,116,117,119,124,125,127, %U A055052 133,135,141,143,148,149,151,156,157,159,165,167,173,175 %N A055052 Numbers of the form 4^i*(8j+7) or 4^i*(8j+5). %C A055052 Numbers not of the form x^2+2y^2+8z^2. %C A055052 The integers that are ratios between the terms constitute the sequence's complement within A003159. - _Peter Munn_, Feb 07 2024 %C A055052 The asymptotic density of this sequence is 1/3. - _Amiram Eldar_, Feb 09 2024 %H A055052 Amiram Eldar, <a href="/A055052/b055052.txt">Table of n, a(n) for n = 1..10000</a> %H A055052 L. J. Mordell, <a href="https://doi.org/10.1093/qmath/os-1.1.276">A new Waring's problem with squares of linear forms</a>, Quart. J. Math., 1 (1930), 276-288 (see p. 283). %t A055052 Select[Range[200], MemberQ[{5, 7}, Mod[# / 4^IntegerExponent[#, 4], 8]] &] (* _Amiram Eldar_, Feb 09 2024 *) %o A055052 (Python) %o A055052 def A055052(n): %o A055052 def bisection(f,kmin=0,kmax=1): %o A055052 while f(kmax) > kmax: kmax <<= 1 %o A055052 kmin = kmax >> 1 %o A055052 while kmax-kmin > 1: %o A055052 kmid = kmax+kmin>>1 %o A055052 if f(kmid) <= kmid: %o A055052 kmax = kmid %o A055052 else: %o A055052 kmin = kmid %o A055052 return kmax %o A055052 def f(x): %o A055052 c = n+x %o A055052 for i in range(x.bit_length()>>1): %o A055052 m = x>>(i<<1) %o A055052 c -= (m-5>>3)+(m-7>>3)+2 %o A055052 return c %o A055052 return bisection(f,n,n) # _Chai Wah Wu_, Feb 14 2025 %Y A055052 Disjoint union of A004215 and A055045. %Y A055052 Subsequence of A003159, A097700. %K A055052 nonn,easy %O A055052 1,1 %A A055052 _N. J. A. Sloane_, Jun 02 2000