cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055090 Number of cycles (excluding fixed points) of the n-th finite permutation in reversed colexicographic ordering (A055089).

This page as a plain text file.
%I A055090 #35 Dec 30 2017 10:00:14
%S A055090 0,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,2,2,2,2,1,2,1,1,
%T A055090 1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,2,2,2,
%U A055090 1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,2,2,1,1,2,2,1,2,1,1,1,1,1,1,2
%N A055090 Number of cycles (excluding fixed points) of the n-th finite permutation in reversed colexicographic ordering (A055089).
%C A055090 Among the first n! entries k appears A136394(n,k) times. - _Tilman Piesk_, Apr 06 2012
%H A055090 Tilman Piesk, <a href="/A055090/b055090.txt">Table of n, a(n) for n = 0..5039</a>
%H A055090 Tilman Piesk, <a href="https://oeis.org/A198380/a198380_1.txt">Table for A198380</a> (a[n] is the number of addends in parentheses on the right of this table)
%H A055090 Tilman Piesk, <a href="https://en.wikiversity.org/wiki/Permutations_and_partitions_in_the_OEIS">Permutations and partitions in the OEIS</a> (Wikiversity)
%H A055090 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F A055090 a(n) = A055093(n) - A055091(n).
%F A055090 a(n) = A056170(A290095(n)) = A060128(A060126(n)). - _Antti Karttunen_, Dec 30 2017
%p A055090 with(group); seq(nops(convert(PermRevLexUnrank(j),'disjcyc')),j=0..)];
%p A055090 # Procedure PermRevLexUnrank given in A055089.
%Y A055090 Cf. A195663, A195664, A055089 (ordered finite permutations).
%Y A055090 Cf. A198380 (cycle type of the n-th finite permutation).
%Y A055090 Cf. A136394, A055089, A055090, A055093, A055091, A060128, A290095.
%K A055090 nonn
%O A055090 0,8
%A A055090 _Antti Karttunen_, Apr 18 2000
%E A055090 Name changed by _Tilman Piesk_, Apr 06 2012