This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055133 #37 Aug 25 2019 03:09:59 %S A055133 1,-1,1,3,-4,1,-19,27,-9,1,211,-304,108,-16,1,-3651,5275,-1900,300, %T A055133 -25,1,90921,-131436,47475,-7600,675,-36,1,-3081513,4455129,-1610091, %U A055133 258475,-23275,1323,-49,1,136407699,-197216832,71282064,-11449536,1033900,-59584,2352,-64,1 %N A055133 Matrix inverse of A008459 (squares of entries of Pascal's triangle). %C A055133 Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0,2*sqrt(-y)). Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - _Peter Bala_, Jul 24 2013 %H A055133 Alois P. Heinz, <a href="/A055133/b055133.txt">Rows n = 0..99, flattened</a> %H A055133 J. Riordan, <a href="http://www.jstor.org/stable/2312584">Inverse relations and combinatorial identities</a>, Amer. Math. Monthly, 71 (1964), 485-498; see p. 493 with beta_{n,k} = |T(n,k)|. %H A055133 W. Wang and T. Wang, <a href="http://dx.doi.org/10.1016/j.disc.2007.12.037">Generalized Riordan array</a>, Discrete Mathematics, 308(24) (2008), 6466-6500. %F A055133 T(n, k) = (-1)^(n+k)*A000275(n-k)*C(n, k)^2. %F A055133 From _Peter Bala_, Jul 24 2013: (Start) %F A055133 Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0,2*sqrt(-y)). Generating function: E(x*y)/E(y) = 1 + (-1 + x)*y + (3 - 4*x + x^2)*y^2/2!^2 + (-19 + 27*x - 9*x^2 + x^3)*y^3/3!^2 + .... %F A055133 The n-th power of this array has a generating function E(x*y)/E(y)^n. In particular, the matrix inverse A008459 has a generating function E(y)*E(x*y). %F A055133 Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(n,k)^2*R(k,x) with initial value R(0,x) = 1. %F A055133 There appears to be a connection between the zeros of the Bessel function E(x) and the real zeros of the row polynomials R(n,x). Let alpha denote the root of E(x) = 0 that is smallest in absolute magnitude. Numerically, alpha = -1.44579 64907 ... ( = -(A115365/2)^2). It appears that the real zeros of R(n,x) approach zeros of E(alpha*x) as n increases. A numerical example is given below. Indeed, it may be the case that lim_{n -> inf} R(n,x)/R(n,0) = E(alpha*x) for arbitrary complex x. (End) %e A055133 Table T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: %e A055133 1; %e A055133 -1, 1; %e A055133 3, -4, 1; %e A055133 -19, 27, -9, 1; %e A055133 211, -304, 108, -16, 1; %e A055133 -3651, 5275, -1900, 300, -25, 1; %e A055133 90921, -131436, 47475, -7600, 675, -36, 1; %e A055133 ... [edited by _Petros Hadjicostas_, Aug 24 2019] %e A055133 From _Peter Bala_, Jul 24 2013: (Start) %e A055133 Function | Real zeros to 5 decimal places %e A055133 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = %e A055133 R(5,x) | 1, 5.40649, 7.23983 %e A055133 R(10,x) | 1, 5.26894, 12.97405, 18.53109 %e A055133 R(15,x) | 1, 5.26894, 12.94909, 24.04769, 33.87883 %e A055133 R(20,x) | 1, 5.26894, 12.94909, 24.04216, 38.54959, 53.32419 %e A055133 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = %e A055133 E(alpha*x) | 1, 5.26894, 12.94909, 24.04216, 38.54835, 56.46772, ... %e A055133 where alpha = -1.44579 64907 ... ( = -(A115365/2)^2). %e A055133 Note: The n-th zero of E(alpha*x) may be calculated in Maple 17 using the instruction evalf( (BesselJZeros(0,n)/BesselJZeros(0,1))^2 ). (End) %p A055133 T:= proc(n) local M; %p A055133 M:= Matrix(n+1, (i, j)-> binomial(i-1, j-1)^2)^(-1); %p A055133 seq(M[n+1, i], i=1..n+1) %p A055133 end: %p A055133 seq(T(n), n=0..10); # _Alois P. Heinz_, Mar 14 2013 %t A055133 T[n_] := Module[{M}, M = Table[Binomial[i-1, j-1]^2, {i, 1, n+1}, {j, 1, n+1}] // Inverse; Table[M[[n+1, i]], {i, 1, n+1}]]; Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Nov 28 2015, after _Alois P. Heinz_ *) %Y A055133 Cf. A000275, A008459 (matrix inverse), A115365. %K A055133 sign,tabl %O A055133 0,4 %A A055133 _Christian G. Bower_, Apr 25 2000