cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055133 Matrix inverse of A008459 (squares of entries of Pascal's triangle).

This page as a plain text file.
%I A055133 #37 Aug 25 2019 03:09:59
%S A055133 1,-1,1,3,-4,1,-19,27,-9,1,211,-304,108,-16,1,-3651,5275,-1900,300,
%T A055133 -25,1,90921,-131436,47475,-7600,675,-36,1,-3081513,4455129,-1610091,
%U A055133 258475,-23275,1323,-49,1,136407699,-197216832,71282064,-11449536,1033900,-59584,2352,-64,1
%N A055133 Matrix inverse of A008459 (squares of entries of Pascal's triangle).
%C A055133 Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0,2*sqrt(-y)). Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - _Peter Bala_, Jul 24 2013
%H A055133 Alois P. Heinz, <a href="/A055133/b055133.txt">Rows n = 0..99, flattened</a>
%H A055133 J. Riordan, <a href="http://www.jstor.org/stable/2312584">Inverse relations and combinatorial identities</a>, Amer. Math. Monthly, 71 (1964), 485-498; see p. 493 with beta_{n,k} = |T(n,k)|.
%H A055133 W. Wang and T. Wang, <a href="http://dx.doi.org/10.1016/j.disc.2007.12.037">Generalized Riordan array</a>, Discrete Mathematics, 308(24) (2008), 6466-6500.
%F A055133 T(n, k) = (-1)^(n+k)*A000275(n-k)*C(n, k)^2.
%F A055133 From _Peter Bala_, Jul 24 2013: (Start)
%F A055133 Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0,2*sqrt(-y)). Generating function: E(x*y)/E(y) = 1 + (-1 + x)*y + (3 - 4*x + x^2)*y^2/2!^2 + (-19 + 27*x - 9*x^2 + x^3)*y^3/3!^2 + ....
%F A055133 The n-th power of this array has a generating function E(x*y)/E(y)^n. In particular, the matrix inverse A008459 has a generating function E(y)*E(x*y).
%F A055133 Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(n,k)^2*R(k,x) with initial value R(0,x) = 1.
%F A055133 There appears to be a connection between the zeros of the Bessel function E(x) and the real zeros of the row polynomials R(n,x). Let alpha denote the root of E(x) = 0 that is smallest in absolute magnitude. Numerically, alpha = -1.44579 64907 ... ( = -(A115365/2)^2). It appears that the real zeros of R(n,x) approach zeros of E(alpha*x) as n increases. A numerical example is given below. Indeed, it may be the case that lim_{n -> inf} R(n,x)/R(n,0) = E(alpha*x) for arbitrary complex x. (End)
%e A055133 Table T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
%e A055133       1;
%e A055133      -1,       1;
%e A055133       3,      -4,     1;
%e A055133     -19,      27,    -9,     1;
%e A055133     211,    -304,   108,   -16,   1;
%e A055133   -3651,    5275, -1900,   300, -25,   1;
%e A055133   90921, -131436, 47475, -7600, 675, -36, 1;
%e A055133   ... [edited by _Petros Hadjicostas_, Aug 24 2019]
%e A055133 From _Peter Bala_, Jul 24 2013: (Start)
%e A055133 Function   |        Real zeros to 5 decimal places
%e A055133 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
%e A055133 R(5,x)     | 1, 5.40649,  7.23983
%e A055133 R(10,x)    | 1, 5.26894, 12.97405, 18.53109
%e A055133 R(15,x)    | 1, 5.26894, 12.94909, 24.04769, 33.87883
%e A055133 R(20,x)    | 1, 5.26894, 12.94909, 24.04216, 38.54959, 53.32419
%e A055133 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
%e A055133 E(alpha*x) | 1, 5.26894, 12.94909, 24.04216, 38.54835, 56.46772, ...
%e A055133 where alpha = -1.44579 64907 ... ( = -(A115365/2)^2).
%e A055133 Note: The n-th zero of E(alpha*x) may be calculated in Maple 17 using the instruction evalf( (BesselJZeros(0,n)/BesselJZeros(0,1))^2 ). (End)
%p A055133 T:= proc(n) local M;
%p A055133        M:= Matrix(n+1, (i, j)-> binomial(i-1, j-1)^2)^(-1);
%p A055133        seq(M[n+1, i], i=1..n+1)
%p A055133     end:
%p A055133 seq(T(n), n=0..10);  # _Alois P. Heinz_, Mar 14 2013
%t A055133 T[n_] := Module[{M}, M = Table[Binomial[i-1, j-1]^2, {i, 1, n+1}, {j, 1, n+1}] // Inverse; Table[M[[n+1, i]], {i, 1, n+1}]]; Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Nov 28 2015, after _Alois P. Heinz_ *)
%Y A055133 Cf. A000275, A008459 (matrix inverse), A115365.
%K A055133 sign,tabl
%O A055133 0,4
%A A055133 _Christian G. Bower_, Apr 25 2000