A055193 Smallest number that is the area of n distinct Pythagorean triangles.
6, 210, 840, 341880, 71831760, 64648584000, 2216650756320, 22861058133513600
Offset: 1
Examples
a(5) = 71831760 is area of 5 Pythagorean triangles: 2415-59488-59537, 2640-54418-54482, 5070-28336-28786, 7280-19734-21034, 10010-14352-17498 From _Sture Sjöstedt_, Jun 09 2017: (Start) The area of 7280-19734-21034 is (2*13)^2*the area of 280-759-809. The area of 10010-14352-17498 is (2*13)^2*the area of 385-552-673. These triangles have the same area as the triangles I get by solving p^2-p*q+q^2=r^2. r=169, p=15, q=176, (q-p)=161 Area=r*p*q*(q-p) q=176 and r=169 gives 2415-59488-59537; r=169 and q-p=161 gives 2640-54418-54482; r=169 and p=15 gives 5070-28336-28786. (End)
Extensions
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
a(8) added by Duncan Moore, Mar 10 2017
Comments