cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055215 A path-counting array, read by rows: T(i,j)=number of paths from (0,0) to (i-j,j) using steps (1 unit right and 1 unit up) or (1 unit right and 2 units up).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 4, 2, 1, 1, 1, 2, 3, 5, 4, 2, 1, 1, 1, 2, 3, 5, 7, 4, 2, 1, 1, 1, 2, 3, 5, 8, 8, 4, 2, 1, 1, 1, 2, 3, 5, 8, 12, 8, 4, 2, 1, 1, 1, 2, 3, 5, 8, 13, 15, 8, 4, 2, 1, 1, 1, 2, 3, 5, 8, 13, 20, 16
Offset: 1

Views

Author

Clark Kimberling, May 07 2000

Keywords

Comments

If m >= 1 and n >= 2, then T(m+n-1,m) is the number of strings (s(1),s(2),...,s(n)) of nonnegative integers satisfying s(n)=m and 1<=s(k)-s(k-1)<=2 for k=2,3,...,n.

Examples

			7=T(8,5) counts these strings: 0135, 0235, 0245, 1235, 1245, 1345, 2345.
Rows: {1}; {1,1}; {1,1,1}; {1,1,2,1}; {1,1,2,2,1}; ...
		

Crossrefs

T(2n, n)=A000045(n+1), the Fibonacci numbers.

Formula

T(i, 0)=T(i, i)=1 for i >= 0; T(i, 1)=1 for i >= 1; T(i, j)=T(i-2, j-1)+T(i-3, j-2) for 2<=j<=i-1, i >= 3.