A055215 A path-counting array, read by rows: T(i,j)=number of paths from (0,0) to (i-j,j) using steps (1 unit right and 1 unit up) or (1 unit right and 2 units up).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 4, 2, 1, 1, 1, 2, 3, 5, 4, 2, 1, 1, 1, 2, 3, 5, 7, 4, 2, 1, 1, 1, 2, 3, 5, 8, 8, 4, 2, 1, 1, 1, 2, 3, 5, 8, 12, 8, 4, 2, 1, 1, 1, 2, 3, 5, 8, 13, 15, 8, 4, 2, 1, 1, 1, 2, 3, 5, 8, 13, 20, 16
Offset: 1
Examples
7=T(8,5) counts these strings: 0135, 0235, 0245, 1235, 1245, 1345, 2345. Rows: {1}; {1,1}; {1,1,1}; {1,1,2,1}; {1,1,2,2,1}; ...
Links
- C. Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1D.
Crossrefs
T(2n, n)=A000045(n+1), the Fibonacci numbers.
Formula
T(i, 0)=T(i, i)=1 for i >= 0; T(i, 1)=1 for i >= 1; T(i, j)=T(i-2, j-1)+T(i-3, j-2) for 2<=j<=i-1, i >= 3.
Comments