cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).

This page as a plain text file.
%I A055248 #88 May 06 2025 11:27:15
%S A055248 1,2,1,4,3,1,8,7,4,1,16,15,11,5,1,32,31,26,16,6,1,64,63,57,42,22,7,1,
%T A055248 128,127,120,99,64,29,8,1,256,255,247,219,163,93,37,9,1,512,511,502,
%U A055248 466,382,256,130,46,10,1,1024,1023,1013,968,848,638,386,176,56,11,1
%N A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).
%C A055248 In the language of the Shapiro et al. reference (also given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-2*z)*(1-x*z/(1-z))).
%C A055248 Binomial transform of the all 1's triangle: as a Riordan array, it factors to give (1/(1-x),x/(1-x))(1/(1-x),x). Viewed as a number square read by antidiagonals, it has T(n,k) = Sum_{j=0..n} binomial(n+k,n-j) and is then the binomial transform of the Whitney square A004070. - _Paul Barry_, Feb 03 2005
%C A055248 Riordan array (1/(1-2x), x/(1-x)). Antidiagonal sums are A027934(n+1), n >= 0. - _Paul Barry_, Jan 30 2005; edited by _Wolfdieter Lang_, Jan 09 2015
%C A055248 Eigensequence of the triangle = A005493: (1, 3, 10, 37, 151, 674, ...); row sums of triangles A011971 and A159573. - _Gary W. Adamson_, Apr 16 2009
%C A055248 Read as a square array, this is the generalized Riordan array ( 1/(1 - 2*x), 1/(1 - x) ) as defined in the Bala link (p. 5), which factorizes as ( 1/(1 - x), x/(1 - x) )*( 1/(1 - x), x )*( 1, 1 + x ) = P*U*transpose(P), where P denotes Pascal's triangle, A007318, and U is the lower unit triangular array with 1's on or below the main diagonal. - _Peter Bala_, Jan 13 2016
%H A055248 Reinhard Zumkeller, <a href="/A055248/b055248.txt">Rows n = 0..125 of triangle, flattened</a>
%H A055248 Peter Bala, <a href="/A260492/a260492.pdf">Notes on generalized Riordan arrays</a>
%H A055248 Peter Bala, <a href="/A055248/a055248.pdf">A055248: Rapidly converging series for log(2) and Pi</a>
%H A055248 Jean-Luc Baril, Javier F. González, and José L. Ramírez, <a href="http://jl.baril.u-bourgogne.fr/BGR.pdf">Last symbol distribution in pattern avoiding Catalan words</a>, Univ. Bourgogne (France, 2022).
%H A055248 Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.
%H A055248 Norman Lindquist and Gerard Sierksma, <a href="https://doi.org/10.1016/0097-3165(81)90015-7">Extensions of set partitions</a>, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
%H A055248 L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, <a href="http://dx.doi.org/10.1016/0166-218X(91)90088-E">The Riordan Group</a>, Discrete Appl. Maths. 34 (1991) 229-239.
%F A055248 a(n, m) = A008949(n, n-m), if n > m >= 0.
%F A055248 a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
%F A055248 Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n<m.
%F A055248 G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
%F A055248 a(n, m) = Sum_{j=0..n} binomial(n, m+j). - _Paul Barry_, Feb 03 2005
%F A055248 Inverse binomial transform (by columns) of A112626. - _Ross La Haye_, Dec 31 2006
%F A055248 T(2n,n) = A032443(n). - _Philippe Deléham_, Sep 16 2009
%F A055248 From _Peter Bala_, Dec 23 2014: (Start)
%F A055248 Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
%F A055248 Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
%F A055248 /I_k 0\
%F A055248 \ 0  M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
%F A055248 a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - _Wolfdieter Lang_, Jan 09 2015
%F A055248 T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - _Peter Luschny_, Oct 10 2019
%F A055248 T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - _Peter Luschny_, Oct 06 2023
%F A055248 n-th row polynomial R(n, x) = (2^n - x*(1 + x)^n)/(1 - x). These polynomials can be used to find series acceleration formulas for the constants log(2) and Pi. - _Peter Bala_, Mar 03 2025
%e A055248 The triangle a(n,m) begins:
%e A055248 n\m    0    1    2   3   4   5   6   7  8  9 10 ...
%e A055248 0:     1
%e A055248 1:     2    1
%e A055248 2:     4    3    1
%e A055248 3:     8    7    4   1
%e A055248 4:    16   15   11   5   1
%e A055248 5:    32   31   26  16   6   1
%e A055248 6:    64   63   57  42  22   7   1
%e A055248 7:   128  127  120  99  64  29   8   1
%e A055248 8:   256  255  247 219 163  93  37   9  1
%e A055248 9:   512  511  502 466 382 256 130  46 10  1
%e A055248 10: 1024 1023 1013 968 848 638 386 176 56 11  1
%e A055248 ... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
%e A055248 Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
%e A055248 The matrix inverse starts
%e A055248    1;
%e A055248   -2,   1;
%e A055248    2,  -3,   1;
%e A055248   -2,   5,  -4,    1;
%e A055248    2,  -7,   9,   -5,    1;
%e A055248   -2,   9, -16,   14,   -6,    1;
%e A055248    2, -11,  25,-  30,   20,   -7,    1;
%e A055248   -2,  13, -36,   55,  -50,   27,   -8,    1;
%e A055248    2, -15,  49,  -91,  105,  -77,   35,   -9,  1;
%e A055248   -2,  17, -64,  140, -196,  182, -112,   44, -10,   1;
%e A055248    2, -19,  81, -204,  336, -378,  294, -156,  54, -11, 1;
%e A055248    ...
%e A055248 which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
%e A055248 From _Peter Bala_, Dec 23 2014: (Start)
%e A055248 With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
%e A055248 /1      \ /1        \ /1       \       /1       \
%e A055248 |2 1     ||0 1       ||0 1      |      |2  1     |
%e A055248 |4 3 1   ||0 2 1     ||0 0 1    |... = |4  5 1   |
%e A055248 |8 7 4 1 ||0 4 3 1   ||0 0 2 1  |      |8 19 9 1 |
%e A055248 |...     ||0 8 7 4 1 ||0 0 4 3 1|      |...      |
%e A055248 |...     ||...       ||...      |      |         |
%e A055248 = A143494. (End)
%e A055248 Matrix factorization of square array as P*U*transpose(P):
%e A055248 /1      \ /1        \ /1 1 1 1 ...\    /1  1  1  1 ...\
%e A055248 |1 1     ||1 1       ||0 1 2 3 ... |   |2  3  4  5 ... |
%e A055248 |1 2 1   ||1 1 1     ||0 0 1 3 ... | = |4  7 11 16 ... |
%e A055248 |1 3 3 1 ||1 1 1 1   ||0 0 0 1 ... |   |8 15 26 42 ... |
%e A055248 |...     ||...       ||...         |   |...            |
%e A055248 - _Peter Bala_, Jan 13 2016
%p A055248 T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
%p A055248 seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # _Peter Luschny_, Oct 10 2019
%t A055248 a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 05 2013, after _Paul Barry_ *)
%t A055248 T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
%t A055248 Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* _Peter Luschny_, Oct 06 2023 *)
%o A055248 (Haskell)
%o A055248 a055248 n k = a055248_tabl !! n !! k
%o A055248 a055248_row n = a055248_tabl !! n
%o A055248 a055248_tabl = map reverse a008949_tabl
%o A055248 -- _Reinhard Zumkeller_, Jun 20 2015
%Y A055248 Column sequences: A000079 (powers of 2, m=0), A000225 (m=1), A000295 (m=2), A002662 (m=3), A002663 (m=4), A002664 (m=5), A035038 (m=6), A035039 (m=7), A035040 (m=8), A035041 (m=9), A035042 (m=10).
%Y A055248 Row sums: A001792(n) = A055249(n, 0).
%Y A055248 Alternating row sums: A011782.
%Y A055248 Cf. A011971, A159573. - _Gary W. Adamson_, Apr 16 2009
%Y A055248 Cf. A007318, A008949, A106516, A143494.
%K A055248 easy,nonn,tabl
%O A055248 0,2
%A A055248 _Wolfdieter Lang_, May 26 2000