cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055249 Triangle of partial row sums (prs) of triangle A055248 (prs of Pascal's triangle A007318).

This page as a plain text file.
%I A055249 #14 Nov 03 2016 23:43:56
%S A055249 1,3,1,8,4,1,20,12,5,1,48,32,17,6,1,112,80,49,23,7,1,256,192,129,72,
%T A055249 30,8,1,576,448,321,201,102,38,9,1,1280,1024,769,522,303,140,47,10,1,
%U A055249 2816,2304,1793,1291,825,443,187,57,11,1,6144,5120,4097,3084,2116,1268,630
%N A055249 Triangle of partial row sums (prs) of triangle A055248 (prs of Pascal's triangle A007318).
%C A055249 In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is ((1-z)/(1-2*z)^2)/(1-x*z/(1-z)).
%C A055249 This is the second member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
%C A055249 The column sequences appear in A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 for m=0..7.
%H A055249 G. C. Greubel, <a href="/A055249/b055249.txt">Table of n, a(n) for n = 0..1274</a>
%F A055249 a(n, m) = Sum_{k=m,..,n} ( A055248(n, k) ), n >= m >= 0, a(n, m) := 0 if n<m, (sequence of partial row sums in column m).
%F A055249 Column m recursion: a(n, m) = Sum_{j=m,..,(n-1)} ( a(j, m) ) + A055248(n, m), n >= m >= 0, a(n, m) := 0 if n<m.
%F A055249 G.f. for column m: ((1-x)/(1-2*x)^2)*(x/(1-x))^m, m >= 0.
%F A055249 a(n, m) = binomial(n, m) * 2F1(2, m-n; m+1; -1) where 2F1 is the hypergeometric function. _Jean-François Alcover_, Mar 11 2014
%e A055249 1;
%e A055249 3,1;
%e A055249 8,4,1;
%e A055249 20,12,5,1;
%e A055249 ...
%e A055249 Fourth row polynomial (n=3): p(3,x)= 20+12*x+5*x^2+x^3
%t A055249 a[n_, m_] := Binomial[n, m]*Hypergeometric2F1[2, m-n, m+1, -1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 11 2014 *)
%Y A055249 Cf. A007318, A055248, A008949. Row sums: A049611(n+1) = A055252(n, 0).
%K A055249 nonn,tabl,easy
%O A055249 0,2
%A A055249 _Wolfdieter Lang_, May 26 2000