A055252 Triangle of partial row sums (prs) of triangle A055249.
1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0
Examples
[0] 1 [1] 4, 1 [2] 13, 5, 1 [3] 38, 18, 6, 1 [4] 104, 56, 24, 7, 1 [5] 272, 160, 80, 31, 8, 1 [6] 688, 432, 240, 111, 39, 9, 1 [7] 1696, 1120, 672, 351, 150, 48, 10, 1 Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1): for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024
Formula
a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024
Comments