This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055261 #14 Apr 08 2025 17:15:19 %S A055261 2,17,32,257,272,512,4097,4112,4352,8192,65537,65552,65792,69632, %T A055261 131072,1048577,1048592,1048832,1052672,1114112,2097152,16777217, %U A055261 16777232,16777472,16781312,16842752,17825792,33554432,268435457 %N A055261 Sums of two powers of 16. %H A055261 Robert Israel, <a href="/A055261/b055261.txt">Table of n, a(n) for n = 1..10000</a> %F A055261 a(n) = 16^(n-trinv(n))+16^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n). %F A055261 Regarded as a triangle T(n, k)=16^n+16^k, so as a sequence a(n) =16^A002262(n)+16^A003056(n). %e A055261 a(4) = 272 = 16^2+16^1. %p A055261 A055261:= proc(n) %p A055261 local p1, p2; %p A055261 p1:= floor((sqrt(8*n-7)-1)/2); %p A055261 p2:= n - 1 - p1*(p1+1)/2; %p A055261 16^p1 + 16^p2 %p A055261 end proc; # _Robert Israel_, Apr 07 2014 %o A055261 (Python) %o A055261 from math import isqrt %o A055261 def A055261(n): return (1<<((a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)<<2))+(1<<(n-1-(a*(a+1)>>1)<<2)) # _Chai Wah Wu_, Apr 08 2025 %Y A055261 Cf. A052216. %K A055261 base,easy,nonn,tabl %O A055261 1,1 %A A055261 _Henry Bottomley_, Jun 22 2000