cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055265 a(n) is the smallest positive integer not already in the sequence such that a(n)+a(n-1) is prime, starting with a(1)=1.

This page as a plain text file.
%I A055265 #115 Mar 30 2020 18:37:43
%S A055265 1,2,3,4,7,6,5,8,9,10,13,16,15,14,17,12,11,18,19,22,21,20,23,24,29,30,
%T A055265 31,28,25,34,27,26,33,38,35,32,39,40,43,36,37,42,41,48,49,52,45,44,53,
%U A055265 50,47,54,55,46,51,56,57,70,61,66,65,62,69,58,73,64,63,68,59,72,67,60
%N A055265 a(n) is the smallest positive integer not already in the sequence such that a(n)+a(n-1) is prime, starting with a(1)=1.
%C A055265 The sequence is well-defined (the terms must alternate in parity, and by Dirichlet's theorem a(n+1) always exists). - _N. J. A. Sloane_, Mar 07 2017
%C A055265 Does every positive integer eventually occur? - _Dmitry Kamenetsky_, May 27 2009. Reply from _Robert G. Wilson v_, May 27 2009: The answer is almost certainly yes, on probabilistic grounds.
%C A055265 It appears that this is the limit of the rows of A051237. That those rows do approach a limit seems certain, and given that that limit exists, that this sequence is the limit seems even more likely, but no proof is known for either conjecture. - _Robert G. Wilson v_, Mar 11 2011, edited by _Franklin T. Adams-Watters_, Mar 17 2011
%C A055265 The sequence is also a particular case of "among the pairwise sums of any M consecutive terms, N are prime", with M = 2, N = 1. For other M, N see A055266 & A253074 (M = 2, N = 0), A329333, A329405 - A329416, A329449 - A329456, A329563 - A329581, and the OEIS Wiki page. - _M. F. Hasler_, Feb 11 2020
%H A055265 Zak Seidov, <a href="/A055265/b055265.txt">Table of n, a(n) for n = 1..10000</a> (First 1000 terms from T. D. Noe)
%H A055265 N. J. A. Sloane, <a href="/A055265/a055265.txt">Table of n, a(n) for n = 1..100000</a> (computed using Orlovsky's Mma program)
%H A055265 M. F. Hasler, <a href="/wiki/User:M._F._Hasler/Prime_sums_from_neighboring_terms">Prime sums from neighboring terms</a>, OEIS Wiki, Nov. 23, 2019
%H A055265 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A055265 a(2n-1) = A128280(2n-1) - 1, a(2n) = A128280(2n) + 1, for all n >= 1. - _M. F. Hasler_, Feb 11 2020
%e A055265 a(5) = 7 because 1, 2, 3 and 4 have already been used and neither 4 + 5 = 9 nor 4 + 6 = 10 are prime while 4 + 7 = 11 is prime.
%p A055265 A055265 := proc(n)
%p A055265     local a,i,known ;
%p A055265     option remember;
%p A055265     if n =1 then
%p A055265         1;
%p A055265     else
%p A055265         for a from 1 do
%p A055265             known := false;
%p A055265             for i from 1 to n-1 do
%p A055265                 if procname(i) = a then
%p A055265                     known := true;
%p A055265                     break;
%p A055265                 end if;
%p A055265             end do:
%p A055265             if not known and isprime(procname(n-1)+a) then
%p A055265                 return a;
%p A055265             end if;
%p A055265         end do:
%p A055265     end if;
%p A055265 end proc:
%p A055265 seq(A055265(n),n=1..100) ; # _R. J. Mathar_, Feb 25 2017
%t A055265 f[s_List] := Block[{k = 1, a = s[[ -1]]}, While[ MemberQ[s, k] || ! PrimeQ[a + k], k++ ]; Append[s, k]]; Nest[f, {1}, 71] (* _Robert G. Wilson v_, May 27 2009 *)
%t A055265 q=2000; a={1}; z=Range[2,2*q]; While[Length[z]>q-1, k=1; While[!PrimeQ[z[[k]]+Last[a]], k++]; AppendTo[a,z[[k]]]; z=Delete[z,k]]; Print[a] (*200 times faster*) (* _Vladimir Joseph Stephan Orlovsky_, May 03 2011 *)
%o A055265 (HP 50G Calculator) << DUPDUP + 2 -> N M L << { 1 } 1 N 1 - FOR i L M FOR j DUP j POS NOT IF THEN j DUP 'L' STO M 'j' STO END NEXT OVER i GET SWAP WHILE DUP2 + DUP ISPRIME? NOT REPEAT DROP DO 1 + 3 PICK OVER POS NOT UNTIL END END ROT DROP2 + NEXT >> >> _Gerald Hillier_, Oct 28 2008
%o A055265 (Haskell)
%o A055265 import Data.List (delete)
%o A055265 a055265 n = a055265_list !! (n-1)
%o A055265 a055265_list = 1 : f 1 [2..] where
%o A055265    f x vs = g vs where
%o A055265      g (w:ws) = if a010051 (x + w) == 1
%o A055265                    then w : f w (delete w vs) else g ws
%o A055265 -- _Reinhard Zumkeller_, Feb 14 2013
%o A055265 (PARI) v=[1];n=1;while(n<50,if(isprime(v[#v]+n)&&!vecsearch(vecsort(v),n), v=concat(v,n);n=0);n++);v \\ _Derek Orr_, Jun 01 2015
%o A055265 (PARI) U=-a=1; vector(100,k, k=valuation(1+U+=1<<a, 2); while(bittest(U,k)|| !isprime(a+k), k++); a=k) \\ _M. F. Hasler_, Feb 11 2020
%Y A055265 Inverse permutation: A117922; fixed points: A117925; A117923=a(a(n)). - _Reinhard Zumkeller_, Apr 03 2006
%Y A055265 Cf. A036440, A051237, A051239, A055266, A088643. A010051.
%Y A055265 Cf. A086527 (the primes a(n)+a(n-1)).
%Y A055265 Cf. A070942 (n's such that a(1..n) is a permutation of (1..n)). - _Zak Seidov_, Oct 19 2011
%Y A055265 See also A076990, A243625.
%Y A055265 See A282695 for deviation from identity sequence.
%Y A055265 A073659 is a version where the partial sums must be primes.
%K A055265 easy,nice,nonn
%O A055265 1,2
%A A055265 _Henry Bottomley_, May 09 2000
%E A055265 Corrected by _Hans Havermann_, Sep 24 2002