This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055324 #23 Sep 08 2022 08:45:01 %S A055324 13,372554,714236250,453911421600,156507084115200,36555247168352640, %T A055324 6528715119143118720,960135043767367104000,122086105154945279712000, %U A055324 13885903109630633425344000,1447862009053077400092710400,140958354488116955062668595200 %N A055324 Number of labeled trees with n nodes and 12 leaves. %H A055324 Vincenzo Librandi, <a href="/A055324/b055324.txt">Table of n, a(n) for n = 13..200</a> %H A055324 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A055324 a(n) = (n!/12!)*Stirling2(n-2, n-12). - _Vladeta Jovovic_, Jan 28 2004 %F A055324 a(n) = n! * (n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000. - _Vaclav Kotesovec_, Jul 25 2014 %t A055324 Table[n! * (n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000,{n,13,25}] (* _Vaclav Kotesovec_, Jul 25 2014 *) %t A055324 Table[(n!/12!)*StirlingS2[n-2, n-12], {n,13, 30}] (* _G. C. Greubel_, Feb 07 2018 *) %o A055324 (Magma) [Factorial(n)*(n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000: n in [13..25]]; // _Vincenzo Librandi_, Jul 25 2014 %o A055324 (PARI) for(n=13, 30, print1((n!/12!)*stirling(n-2, n-12, 2), ", ")) \\ _G. C. Greubel_, Feb 07 2018 %o A055324 (Magma) [(Factorial(n)/Factorial(12))*StirlingSecond(n-2, n-12): n in [13..30]]; // _G. C. Greubel_, Feb 07 2018 %Y A055324 Column 12 of A055314. %K A055324 nonn %O A055324 13,1 %A A055324 _Christian G. Bower_, May 11 2000 %E A055324 Missing a(24) inserted by _Andrew Howroyd_, Feb 23 2018