This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055325 #18 Feb 23 2025 11:34:32 %S A055325 1,-1,1,3,-4,1,-23,33,-11,1,425,-620,220,-26,1,-18129,26525,-9520, %T A055325 1180,-57,1,1721419,-2519664,905765,-113050,5649,-120,1,-353654167, %U A055325 517670461,-186123259,23248085,-1166221,25347,-247,1,153923102577 %N A055325 Matrix inverse of Euler's triangle A008292. %H A055325 Robert Israel, <a href="/A055325/b055325.txt">Table of n, a(n) for n = 1..3321</a> (rows 1 to 81, flattened) %e A055325 Triangle starts: %e A055325 [1] 1; %e A055325 [2] -1, 1; %e A055325 [3] 3, -4, 1; %e A055325 [4] -23, 33, -11, 1; %e A055325 [5] 425, -620, 220, -26, 1; %e A055325 [6] -18129, 26525, -9520, 1180, -57, 1; %e A055325 [7] 1721419, -2519664, 905765, -113050, 5649, -120, 1; %e A055325 [8]-353654167, 517670461, -186123259, 23248085, -1166221, 25347, -247, 1; %p A055325 A008292:= proc(n, k) option remember; %p A055325 if k < 1 or k > n then 0 %p A055325 elif k = 1 or k = n then 1 %p A055325 else (k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1)) %p A055325 fi %p A055325 end proc: %p A055325 T:= Matrix(10,10,(i,j) -> A008292(i,j)): %p A055325 R:= T^(-1): %p A055325 seq(seq(R[i,j],j=1..i),i=1..10); # _Robert Israel_, May 25 2018 %t A055325 m = 10 (*rows*); %t A055325 t[n_, k_] := Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}]; %t A055325 M = Array[t, {m, m}] // Inverse; %t A055325 Table[M[[i, j]], {i, 1, m}, {j, 1, i}] // Flatten (* _Jean-François Alcover_, Mar 05 2019 *) %t A055325 T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (n-k+1) T[n-1, k-1] + k T[n-1, k]; T[n_, k_] := 0;(*A008292*) %t A055325 iT[n_, n_]/;n>=1 := 1; iT[n_, k_]/;1<=k<n := iT[n, k] = -T[n, k] - Sum[T[n, k+j] iT[k+j, k], {j, n-k-1}]; iT[n_, k_] := 0;(*A055325*) %t A055325 Flatten@Table[iT[n, k], {n, 1, 9}, {k, 1, n}] (* _Oliver Seipel_, Feb 10 2025 *) %Y A055325 Cf. A008292, A162498. %K A055325 sign,tabl %O A055325 1,4 %A A055325 _Christian G. Bower_, May 12 2000