This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055327 #26 Aug 28 2018 23:38:33 %S A055327 1,1,1,1,1,1,2,1,4,1,1,6,5,1,9,13,2,1,12,28,11,1,16,53,40,3,1,20,91, %T A055327 109,26,1,25,146,254,116,6,1,30,223,524,387,61,1,36,326,998,1068,329, %U A055327 12,1,42,461,1774,2587,1289,145,1,49,634,2995,5678,4133,911,25,1,56 %N A055327 Triangle of rooted identity trees with n nodes and k leaves. %C A055327 Row lengths are 1,1,1,2,2,3,3,4,4,5,5,6,6,... %H A055327 Andrew Howroyd, <a href="/A055327/b055327.txt">Table of n, a(n) for n = 1..1226</a> (first 70 rows) %H A055327 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A055327 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A055327 G.f. satisfies A(x,y) = x*y + x*WEIGH(A(x,y)) - x. Shifts up under WEIGH transform. %e A055327 Triangle begins: %e A055327 1; %e A055327 1; %e A055327 1; %e A055327 1, 1; %e A055327 1, 2; %e A055327 1, 4, 1; %e A055327 1, 6, 5; %e A055327 1, 9, 13, 2; %e A055327 1, 12, 28, 11; %e A055327 1, 16, 53, 40, 3; %e A055327 ... %e A055327 From _Joerg Arndt_, Aug 18 2014: (Start) %e A055327 The identity trees with n=6 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are: %e A055327 : %e A055327 : 1: [ 0 1 2 3 4 5 ] 1 %e A055327 : O--o--o--o--o--o %e A055327 : %e A055327 : 2: [ 0 1 2 3 4 3 ] 2 %e A055327 : O--o--o--o--o %e A055327 : .--o %e A055327 : %e A055327 : 3: [ 0 1 2 3 4 2 ] 2 %e A055327 : O--o--o--o--o %e A055327 : .--o %e A055327 : %e A055327 : 4: [ 0 1 2 3 4 1 ] 2 %e A055327 : O--o--o--o--o %e A055327 : .--o %e A055327 : %e A055327 : 5: [ 0 1 2 3 2 1 ] 3 %e A055327 : O--o--o--o %e A055327 : .--o %e A055327 : .--o %e A055327 : %e A055327 : 6: [ 0 1 2 3 1 2 ] 2 %e A055327 : O--o--o--o %e A055327 : .--o--o %e A055327 : %e A055327 This gives [1, 4, 1], row n=6 of the triangle. %e A055327 (End) %o A055327 (PARI) %o A055327 WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} %o A055327 A(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p->Vecrev(p/y), v)} %o A055327 { my(T=A(15)); for(n=1, #T, print(T[n])) } \\ _Andrew Howroyd_, Aug 28 2018 %Y A055327 Row sums give A004111. %Y A055327 Columns 2 to 8: A002620(n-2), A055328, A055329, A055330, A055331, A055332, A055333. %Y A055327 A regular version is A301342. %Y A055327 Cf. A055334. %K A055327 nonn,tabf,eigen %O A055327 1,7 %A A055327 _Christian G. Bower_, May 12 2000