This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055375 #44 Dec 05 2023 16:07:09 %S A055375 1,1,1,2,3,2,3,7,7,3,5,14,21,14,5,7,26,48,48,26,7,11,45,103,131,103, %T A055375 45,11,15,75,198,312,312,198,75,15,22,120,366,674,830,674,366,120,22, %U A055375 30,187,637,1359,1961,1961,1359,637,187,30,42,284,1078,2584,4302,5066,4302,2584,1078,284,42 %N A055375 Euler transform of Pascal's triangle A007318. %C A055375 Number of partitions of n objects, k of which are black, into parts each of which is a sequence of objects. E.g. T(3,1) = 7; the partitions are [BWW], [WBW], [WWB], [BW,W], [WB,W], [WW,B] and [B,W,W]. - _Franklin T. Adams-Watters_, Jan 10 2007 %H A055375 Alois P. Heinz, <a href="/A055375/b055375.txt">Rows n = 0..200, flattened</a> %H A055375 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A055375 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A055375 G.f.: Product_{i>=1} Product_{j=0..i} 1/(1 - x^i y^j)^C(i,j). - _Franklin T. Adams-Watters_, Jan 10 2007 %F A055375 Sum_{k=0..2n} (-1)^k * T(2n,k) = A034691(n). - _Alois P. Heinz_, Dec 05 2023 %e A055375 Triangle begins %e A055375 1; %e A055375 1, 1; %e A055375 2, 3, 2; %e A055375 3, 7, 7, 3; %e A055375 5, 14, 21, 14, 5; %e A055375 7, 26, 48, 48, 26, 7; %e A055375 11, 45, 103, 131, 103, 45, 11; %e A055375 15, 75, 198, 312, 312, 198, 75, 15; %e A055375 ... %p A055375 g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( %p A055375 g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j)))) %p A055375 end: %p A055375 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A055375 `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) %p A055375 end: %p A055375 T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): %p A055375 seq(T(n), n=0..15); # _Alois P. Heinz_, Feb 14 2023 %t A055375 nmax = 10; pp = Product[Product[1/(1 - x^i*y^j)^Binomial[i, j], {j, 0, i}], {i, 1, nmax}]; t[n_, k_] := SeriesCoefficient[pp, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 18 2017 *) %Y A055375 Row sums give A034899. %Y A055375 Columns k=0-1 give: A000041, A014153(n-1) for n>=1. %Y A055375 T(2n,n) gives A360626. %Y A055375 Cf. A007318, A034691, A209406, A360634. %K A055375 nonn,tabl %O A055375 0,4 %A A055375 _Christian G. Bower_, May 16 2000