This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055412 #27 Jun 21 2024 12:40:11 %S A055412 1,13,485,4197,23793,84769,252673,622573,1395261,2787125,5260181, %T A055412 9249417,15637897,25112577,39258381,59174749,87380293,125264525, %U A055412 176663297,244000537,332379769,444344469,587923621,766764301,990981473 %N A055412 Number of points in Z^6 of norm <= n. %H A055412 Andrew Howroyd, <a href="/A055412/b055412.txt">Table of n, a(n) for n = 0..500</a> %F A055412 a(n) = A122510(6,n^2). - _R. J. Mathar_, Apr 21 2010 %F A055412 a(n) = [x^(n^2)] theta_3(x)^6/(1 - x), where theta_3() is the Jacobi theta function. - _Ilya Gutkovskiy_, Apr 14 2018 %t A055412 t[d_, n_] := t[d, n] = t[d, n - 1] + SquaresR[d, n]; t[d_, 0] = 1; %t A055412 a[n_] := t[6, n^2]; %t A055412 a /@ Range[0, 100] (* _Jean-François Alcover_, Sep 27 2019, after _R. J. Mathar_ *) %o A055412 (Python) %o A055412 from math import prod %o A055412 from sympy import factorint %o A055412 def A055412(n): %o A055412 c = 1 %o A055412 for m in range(1,n**2+1): %o A055412 f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(m).items()] %o A055412 c += (prod((p**(e+1<<1)-a)//(p**2-a) for p, e, a in f)<<2)-prod(((k:=p**2*a)**(e+1)-1)//(k-1) for p, e, a in f)<<2 %o A055412 return c # _Chai Wah Wu_, Jun 21 2024 %Y A055412 Column k=6 of A302997. %Y A055412 Cf. A122510. %K A055412 nonn %O A055412 0,2 %A A055412 _David W. Wilson_