This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055418 #29 Aug 31 2025 09:11:19 %S A055418 1,4,11,29,70,157,337,702,1420,2780,5258,9615,17043,29381,49430,81404, %T A055418 131563,209084,327237,504945,768820,1155781,1716375,2518938,3654750, %U A055418 5244356,7445244,10461091,14552809,20051645,27374612,37042552,49701157 %N A055418 Number of points in N^n of norm <= 3. %H A055418 Andrew Howroyd, <a href="/A055418/b055418.txt">Table of n, a(n) for n = 0..1000</a> %H A055418 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A055418 Satisfies a degree nine polynomial (see Example section). - _Olivier Gérard_, Mar 30 2015 %F A055418 G.f.: -(8*x^8-35*x^7+51*x^6-30*x^5-5*x^4+21*x^3-16*x^2+6*x-1) / (x-1)^10. - _Colin Barker_, Jul 07 2013 %e A055418 There are exactly 19 coordinate configurations (up to permutation) with up to 9 nonzero positive coordinates that can produce a vector of norm <= 3: %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 0, 0} 0 %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 0, 1} 1 %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 0, 2} 2 %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 0, 3} 3 %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 1, 1} sqrt(2) %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 1, 2} sqrt(5) %e A055418 {..., 0, 0, 0, 0, 0, 0, 0, 2, 2} 2 sqrt(2) %e A055418 {..., 0, 0, 0, 0, 0, 0, 1, 1, 1} sqrt(3) %e A055418 {..., 0, 0, 0, 0, 0, 0, 1, 1, 2} sqrt(2) sqrt(3) %e A055418 {..., 0, 0, 0, 0, 0, 0, 1, 2, 2} 3 %e A055418 {..., 0, 0, 0, 0, 0, 1, 1, 1, 1} 2 %e A055418 {..., 0, 0, 0, 0, 0, 1, 1, 1, 2} sqrt(7) %e A055418 {..., 0, 0, 0, 0, 1, 1, 1, 1, 1} sqrt(5) %e A055418 {..., 0, 0, 0, 0, 1, 1, 1, 1, 2} 2 sqrt(2) %e A055418 {..., 0, 0, 0, 1, 1, 1, 1, 1, 1} sqrt(6) %e A055418 {..., 0, 0, 0, 1, 1, 1, 1, 1, 2} 3 %e A055418 {..., 0, 0, 1, 1, 1, 1, 1, 1, 1} sqrt(7) %e A055418 {..., 0, 1, 1, 1, 1, 1, 1, 1, 1} 2 sqrt(2) %e A055418 {..., 1, 1, 1, 1, 1, 1, 1, 1, 1} 3 %e A055418 To produce the formula for a(n), it is sufficient to sum the number of permutations of these configurations in a vector of arbitrary length n. %e A055418 This gives in the same order: %e A055418 a(n) = 1 + n + n + n + binomial(n, 2) + n*(n - 1) + binomial(n, 2) + binomial(n, 3) + n*binomial(n-1, 2) + n*binomial(n-1, 2) + binomial(n, 4) + n*binomial(n-1, 3) + binomial(n, 5) + n*binomial(n-1, 4) + binomial(n, 6) + n*binomial(n-1, 5) + binomial(n, 7) + binomial(n, 8) + binomial(n, 9). %e A055418 This is a polynomial of degree 9 in n. %e A055418 a(n) = (1 + n) (9! + n (452016 + n (-224244 + n (152108 + n (-17351 + n (-16 + n (394 + (-28 + n) n)))))))/(9!). %Y A055418 Row n=3 of A302998. %Y A055418 Cf. A055417 (case for norm <= 2). %K A055418 nonn,easy,changed %O A055418 0,2 %A A055418 _David W. Wilson_