This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055437 #27 Sep 08 2022 08:45:01 %S A055437 11,42,93,164,255,366,497,648,819,1010,1221,1452,1703,1974,2265,2576, %T A055437 2907,3258,3629,4020,4431,4862,5313,5784,6275,6786,7317,7868,8439, %U A055437 9030,9641,10272,10923,11594,12285,12996,13727,14478,15249,16040,16851,17682,18533 %N A055437 a(n) = 10*n^2+n. %C A055437 a(n) = A055436(n) if 1<=n<10. %C A055437 Number of edges in the join of the complete 4-partite graph of order 4n and the cycle graph of order n, K_n,n,n,n * C_n. - _Roberto E. Martinez II_, Jan 07 2002 %H A055437 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A055437 From _Bruno Berselli_, Nov 26 2013: (Start) %F A055437 G.f.: x*(11 + 9*x) / (1 - x)^3. %F A055437 a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2. %F A055437 a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End) %F A055437 From _Wesley Ivan Hurt_, Apr 27 2016: (Start) %F A055437 a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. %F A055437 a(n) = (1/5) * Sum_{i=0..10*n} i. (End) %F A055437 E.g.f.: x*(11 + 10*x)*exp(x). - _Ilya Gutkovskiy_, Apr 27 2016 %F A055437 a(n) = A000217(6*n) - A000217(4*n). - _Bruno Berselli_, Sep 21 2016 %e A055437 From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2. %p A055437 A055437:=n->10*n^2+n: seq(A055437(n), n=1..50); # _Wesley Ivan Hurt_, Apr 27 2016 %t A055437 Table[10 n^2 + n, {n, 50}] (* _Wesley Ivan Hurt_, Apr 27 2016 *) %o A055437 (Magma) [10*n^2+n : n in [1..50]]; // _Wesley Ivan Hurt_, Apr 27 2016 %o A055437 (PARI) a(n)=10*n^2+n \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A055437 Cf. A000217, A002378, A055436, A055438. %K A055437 nonn,easy %O A055437 1,1 %A A055437 _Henry Bottomley_, May 18 2000